Expanding the boundaries of learning

2021 ◽  
Vol 102 (8) ◽  
pp. 8-13
Author(s):  
Thomas Hatch

Taking advantage of the possibilities for learning outside of school requires us to build on what we know about why it is so hard to sustain and scale up unconventional educational experiences within conventional schools. To illustrate the opportunities and challenges, Thomas Hatch describes a large-scale approach to project-based learning developed in a camp in New Hampshire and incorporated in a Brooklyn school, a trip-based program in Detroit, and Singapore’s systemic embrace of learning outside school. By understanding the conditions that can sustain alternative instructional practices, educators can find places to challenge the boundaries of schooling and create visions of the possible that exceed current constraints.

Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


2020 ◽  
Vol 27 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Niaz Ahmad ◽  
Muhammad Aamer Mehmood ◽  
Sana Malik

: In recent years, microalgae have emerged as an alternative platform for large-scale production of recombinant proteins for different commercial applications. As a production platform, it has several advantages, including rapid growth, easily scale up and ability to grow with or without the external carbon source. Genetic transformation of several species has been established. Of these, Chlamydomonas reinhardtii has become significantly attractive for its potential to express foreign proteins inexpensively. All its three genomes – nuclear, mitochondrial and chloroplastic – have been sequenced. As a result, a wealth of information about its genetic machinery, protein expression mechanism (transcription, translation and post-translational modifications) is available. Over the years, various molecular tools have been developed for the manipulation of all these genomes. Various studies show that the transformation of the chloroplast genome has several advantages over nuclear transformation from the biopharming point of view. According to a recent survey, over 100 recombinant proteins have been expressed in algal chloroplasts. However, the expression levels achieved in the algal chloroplast genome are generally lower compared to the chloroplasts of higher plants. Work is therefore needed to make the algal chloroplast transformation commercially competitive. In this review, we discuss some examples from the algal research, which could play their role in making algal chloroplast commercially successful.


2021 ◽  
pp. 037957212098250
Author(s):  
Jennifer K. Foley ◽  
Kristina D. Michaux ◽  
Bho Mudyahoto ◽  
Laira Kyazike ◽  
Binu Cherian ◽  
...  

Background: Micronutrient deficiencies affect over one quarter of the world’s population. Biofortification is an evidence-based nutrition strategy that addresses some of the most common and preventable global micronutrient gaps and can help improve the health of millions of people. Since 2013, HarvestPlus and a consortium of collaborators have made impressive progress in the enrichment of staple crops with essential micronutrients through conventional plant breeding. Objective: To review and highlight lessons learned from multiple large-scale delivery strategies used by HarvestPlus to scale up biofortification across different country and crop contexts. Results: India has strong public and private sector pearl millet breeding programs and a robust commercial seed sector. To scale-up pearl millet, HarvestPlus established partnerships with public and private seed companies, which facilitated the rapid commercialization of products and engagement of farmers in delivery activities. In Nigeria, HarvestPlus stimulated the initial acceptance and popularization of vitamin A cassava using a host of creative approaches, including “crowding in” delivery partners, innovative promotional programs, and development of intermediate raw material for industry and novel food products. In Uganda, orange sweet potato (OSP) is a traditional subsistence crop. Due to this, and the lack of formal seed systems and markets, HarvestPlus established a network of partnerships with community-based nongovernmental organizations and vine multipliers to popularize and scale-up delivery of OSP. Conclusions: Impact of biofortification ultimately depends on the development of sustainable markets for biofortified seeds and products. Results illustrate the need for context-specific, innovative solutions to promote widespread adoption.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alisa Alekseenko ◽  
Donal Barrett ◽  
Yerma Pareja-Sanchez ◽  
Rebecca J. Howard ◽  
Emilia Strandback ◽  
...  

AbstractRT-LAMP detection of SARS-CoV-2 has been shown to be a valuable approach to scale up COVID-19 diagnostics and thus contribute to limiting the spread of the disease. Here we present the optimization of highly cost-effective in-house produced enzymes, and we benchmark their performance against commercial alternatives. We explore the compatibility between multiple DNA polymerases with high strand-displacement activity and thermostable reverse transcriptases required for RT-LAMP. We optimize reaction conditions and demonstrate their applicability using both synthetic RNA and clinical patient samples. Finally, we validate the optimized RT-LAMP assay for the detection of SARS-CoV-2 in unextracted heat-inactivated nasopharyngeal samples from 184 patients. We anticipate that optimized and affordable reagents for RT-LAMP will facilitate the expansion of SARS-CoV-2 testing globally, especially in sites and settings where the need for large scale testing cannot be met by commercial alternatives.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 173
Author(s):  
Alessandro Pistone ◽  
Cristina Scolaro ◽  
Annamaria Visco

The accumulation of marine organisms on ship hulls, such as microorganisms, barnacles, and seaweeds, represents a global problem for maritime industries, with both economic and environmental costs. The use of biocide-containing paints poses a serious threat to marine ecosystems, affecting both target and non-target organisms driving science and technology towards non-biocidal solutions based on physico-chemical and materials properties of coatings. The review reports recent development of hydrophobic protective coatings in terms of mechanical properties, correlated with the wet ability features. The attention is focused mainly on coatings based on siloxane and epoxy resin due to the wide application fields of such systems in the marine industry. Polyurethane and other systems have been considered as well. These coatings for anti-fouling applications needs to be both long-term mechanically stable, perfectly adherent with the metallic/composite substrate, and capable to detach/destroy the fouling organism. Prospects should focus on developing even “greener” antifouling coatings solutions. These coatings should also be readily addressable to industrial scale-up for large-scale product distribution, possibly at a reasonable cost.


2016 ◽  
Vol 51 (7) ◽  
pp. 849-857 ◽  
Author(s):  
Antônio Heriberto de Castro Teixeira ◽  
Jorge Tonietto ◽  
Janice Freitas Leivas

Abstract: The objective of this work was to develop and apply water balance indicators to be scaled up in the wine grape (Vitis vinifera) growing regions of the municipalities of Petrolina and Juazeiro, in the states of Pernambuco and Bahia, respectively, Brazil, simulating different pruning dates along the year. Previous energy balance measurements were used to relate the crop coefficient (Kc) with the accumulated degree-days (DDac). This model was applied to scale up the water balance indicators during the growing seasons. When irrigation water was available, the best pruning periods were from May to July, due to the better natural thermal and hidrological conditions. More care should be taken for pruning done in other periods of the year, regarding the effect of increasing thermal conditions of wine quality. The water balance indicators, both successfully developed and applied, allow large-scale analyses of the thermohydrological conditions for wine grape production under the semiarid conditions of the Brazilian Northeast.


1984 ◽  
Vol 144 ◽  
pp. 13-46 ◽  
Author(s):  
N. J. Cherry ◽  
R. Hillier ◽  
M. E. M. P. Latour

Measurements of fluctuating pressure and velocity, together with instantaneous smoke-flow visualizations, are presented in order to reveal the unsteady structure of a separated and reattaching flow. It is shown that throughout the separation bubble a low-frequency motion can be detected which appears to be similar to that found in other studies of separation. This effect is most significant close to separation, where it leads to a weak flapping of the shear layer. Lateral correlation scales of this low-frequency motion are less than the reattachment length, however; it appears that its timescale is about equal to the characteristic timescale for the shear layer and bubble to change between various shedding phases. These phases were defined by the following observations: shedding of pseudoperiodic trains of vortical structures from the reattachment zone, with a characteristic spacing between structures of typically 60% to 80% of the bubble length; a large-scale but irregular shedding of vorticity; and a relatively quiescent phase with the absence of any large-scale shedding structures and a significant ‘necking’ of the shear layer downstream of reattachment.Spanwise correlations of velocity in the shear layer show on average an almost linear growth of spanwise scale up to reattachment. It appears that the shear layer reaches a fully three-dimensional state soon after separation. The reattachment process does not itself appear to impose an immediate extra three-dimensionalizing effect upon the large-scale structures.


2018 ◽  
Vol 16 (06) ◽  
pp. 1850052
Author(s):  
Y. H. Lee ◽  
M. Khalil-Hani ◽  
M. N. Marsono

While physical realization of practical large-scale quantum computers is still ongoing, theoretical research of quantum computing applications is facilitated on classical computing platforms through simulation and emulation methods. Nevertheless, the exponential increase in resource requirement with the increase in the number of qubits is an inherent issue in classical modeling of quantum systems. In the effort to alleviate the critical scalability issue in existing FPGA emulation works, a novel FPGA-based quantum circuit emulation framework based on Heisenberg representation is proposed in this paper. Unlike previous works that are restricted to the emulations of quantum circuits of small qubit sizes, the proposed FPGA emulation framework can scale-up to 120-qubit on Altera Stratix IV FPGA for the stabilizer circuit case study while providing notable speed-up over the equivalent simulation model.


Author(s):  
Ying Duan ◽  
Xiaogen Yi ◽  
Qinglong Xie ◽  
Zhengai Weng ◽  
Peng Yuan ◽  
...  

Microwave reactors equipped with microwave absorbent as high-temperature bed are effective for the pyrolysis reactions. The uniformity and stability of temperature distribution on the microwave absorbent bed surface is important to the microwave pyrolysis reactor especially in the large-scale reactor. Herein, the temperature distribution on the SiC microwave absorbent bed in a large-scale microwave pyrolysis reactor without feeding was examined by both infrared thermography and simulation. Considering the economics of using multiple low-power magnetrons in large-scale reactor, the effect of the working magnetrons location on the heating rate of bed surface and the COV of temperature distribution was investigated. The results showed that more uniform and stable temperature distribution of bed surface in the large-scale reactor was obtained when the magnetrons located at the bottom of the reactor were in use. This study provides guidance for the scale-up of microwave-assisted pyrolysis reactor with multiple low-power magnetrons.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009315
Author(s):  
Ardalan Naseri ◽  
Junjie Shi ◽  
Xihong Lin ◽  
Shaojie Zhang ◽  
Degui Zhi

Inference of relationships from whole-genome genetic data of a cohort is a crucial prerequisite for genome-wide association studies. Typically, relationships are inferred by computing the kinship coefficients (ϕ) and the genome-wide probability of zero IBD sharing (π0) among all pairs of individuals. Current leading methods are based on pairwise comparisons, which may not scale up to very large cohorts (e.g., sample size >1 million). Here, we propose an efficient relationship inference method, RAFFI. RAFFI leverages the efficient RaPID method to call IBD segments first, then estimate the ϕ and π0 from detected IBD segments. This inference is achieved by a data-driven approach that adjusts the estimation based on phasing quality and genotyping quality. Using simulations, we showed that RAFFI is robust against phasing/genotyping errors, admix events, and varying marker densities, and achieves higher accuracy compared to KING, the current leading method, especially for more distant relatives. When applied to the phased UK Biobank data with ~500K individuals, RAFFI is approximately 18 times faster than KING. We expect RAFFI will offer fast and accurate relatedness inference for even larger cohorts.


Sign in / Sign up

Export Citation Format

Share Document