scholarly journals Andean Flora as a Source of New Repellents against Insect Pests: Behavioral, Morphological and Electrophysiological Studies on Sitophilus zeamais (Coleoptera: Curculionidae)

Insects ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 171 ◽  
Author(s):  
Roberto Romani ◽  
Stefano Bedini ◽  
Gianandrea Salerno ◽  
Roberta Ascrizzi ◽  
Guido Flamini ◽  
...  

Sitophilus zeamais (Motschulsky) is considered as one of the most destructive foodstuff pests. Due to their efficiency, low toxicity for mammalians and low environmental impact, plant-derived essential oils (EOs) are promising tools for pest control. In particular, the OEs extracted from Lamiaceae are considered among the most bioactive in terms of repellent and/or insecticidal effect. Here, we investigated the repellence of the EOs extracted from two aromatic plant species typical of the flora of the Ecuadorian Andes, Clinopodium tomentosum and C. nubigeum, against adults of S. zeamais. The behavioral assays carried out at concentrations ranging from 0.7 to 23.9 μL L−1 air in a two-way static olfactometer showed a significant repellent effect starting from the concentration of 8.4 mL L−1 air both for the EO of C. nubigenum and C. tomentosum. We also carried out a complete structural analysis of the antenna of S. zeamais using scanning (SEM) and transmission electron microscopy (TEM), in order to characterize the olfactory sensilla equipment. In this species, there is no sexual dimorphism also as regards to the antennal morphology and the sensilla type and distribution. We identified six type of sensilla, among which at least three types (Sensillum Trichoideum 1, Sensillum Trichoideum 2 and Grooved Peg Sensillum) can be considered as olfactory. Electroantennography (EAG) recordings carried out on S. zeamais revealed a positive dose-response to both EOs, without differences between the two sexes.

2007 ◽  
Vol 2 (12) ◽  
pp. 1934578X0700201 ◽  
Author(s):  
Martin B. Ngassoum ◽  
Leonard S. Ngamo Tinkeu ◽  
Iliassa Ngatanko ◽  
Leon A. Tapondjou ◽  
Georges Lognay ◽  
...  

Essential oils of aromatic plants with insecticidal properties are nowadays considered as alternative insecticides to protect stored products from attack by insect pests. A combination of some of these plants in the granaries is a current practice in certain localities of northern Cameroon. The aim of the present work was to analyze the impact of the combinations of the essential oils of Vepris heterophylla (Rutaceae), Ocimum canum, and Hyptis spicigera (both Lamiaceae), the three most used local aromatic plants because of their insecticidal activity and their repellent effect on Sitophilus oryzae. The present work revealed that these plants are rich in monoterpenoids. The GC/MS analyses have shown that monoterpenoids represented 65.5% for H. spicigera, 92.1% for O. canum and 47.0% for V. heterophylla. The crude essential oil of O. canum was the most insecticidal with a LD50 of 42.9 ppm. The most repellent effect was obtained by a combination of the essential oils of H. spicigera and O. canum, with a repellent percentage at 77.5%. These results suggest a suitable strategy for pest management of stored products.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 194
Author(s):  
Maria C. Boukouvala ◽  
Nickolas G. Kavallieratos

The larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae) is one of the most destructive insect pests of stored maize and dried tubers of cassava, and a wood-boring species. In the present study, we examined two chlorantraniliprole formulations, WG (wettable granule) with 350 g/kg active ingredient (a.i.) and SC (suspension concentrate) with 200 g/L a.i., as maize protectants against P. truncatus adults. Chlorantraniliprole formulations were applied as solutions at 0.01, 0.1, 1 and 10 ppm, and tested at 20, 25 and 30 °C. Both formulations performed similarly. After 7 days of exposure, the overall mortality provided by both formulations was very low (<17%). Seven days later, mortality was remarkably increased on maize treated with 1 and 10 ppm at 25 and 30 °C for both formulations. The highest mortality was noted in chlorantraniliprole WG, at 10 ppm and 30 °C (98.9%), followed by chlorantraniliprole SC (96.1%), at the same dose and temperature. WG formulation was more effective at 10 ppm and 25 °C (92.8%) than SC formulation (89.4%). No progeny production was noted on maize treated with the WG formulation at 20 and 30 °C. The SC formulation caused complete offspring suppression at 10 ppm at all three tested temperatures. The results of the present work indicate that chlorantraniliprole is an effective compound with a high insecticidal activity against T. truncatus on stored maize that depends on temperature, dose and exposure interval. The fact that chlorantraniliprole is a broad-spectrum insecticide, exhibiting low toxicity to mammals and beneficial arthropods, could be a valuable management tool in storage facilities.


Author(s):  
Ana Cristina Bahia ◽  
Ana Beatriz F Barletta ◽  
Luciana Conceição Pinto ◽  
Alessandra S Orfanó ◽  
Rafael Nacif-Pimenta ◽  
...  

Abstract We investigated by scanning electron microscopy the morphology, distribution, and abundance of antennal sensilla of females Phlebotomus duboscqi sand fly, an important vector of zoonotic cutaneous leishmaniasis at Afrotropical region. Thirteen well-differentiated sensilla were identified, among six types of cuticular sensilla. The probable function of these sensillary types is discussed in relation to their external structure and distribution. Five sensillary types were classified as olfactory sensilla, as they have specific morphological characters of sensilla with this function. Number and distribution of sensilla significantly differed between antennal segments. The results of the present work, besides corroborating in the expansion of the morphological and ultrastructural knowledge of P. duboscqi, can foment future electrophysiological studies for the development of volatile semiochemicals, to be used as attractants in traps for monitoring and selective vector control of this sand fly.


2015 ◽  
Vol 63 ◽  
pp. 249-255 ◽  
Author(s):  
Hind Houria Bougherra ◽  
Stefano Bedini ◽  
Guido Flamini ◽  
Francesca Cosci ◽  
Kamel Belhamel ◽  
...  

2018 ◽  
Vol 10 (8) ◽  
pp. 100
Author(s):  
Tadele Tefera ◽  
Addis Teshome ◽  
Charles Singano

A study was conducted for 12 months to evaluate the effectiveness of two improved hermetic storage structures against two maize storage pests Sitophilus zeamais and Prostephanus truncatus at Liwufu Research Station, Malawi. The storages were metal silo and hermetic bag; Actellic super dust was included as a control. The treatments (storages) were replicated four times under natural and artificial infestations. Grain stored in metal silo had the lowest mean percentage weight loss, 1.04% to 1.25%, 12 months after storage followed by hermetic bag, 2.46% to 6.64%. Grain treated with Actellic super had the highest weight loss, 4.86% to 18.72%. The study showed that hermetic storage structures can be promoted as effective alternative non-chemical methods of grain storage for small holder farmers in Malawi.


1990 ◽  
Vol 68 (7) ◽  
pp. 1443-1453 ◽  
Author(s):  
J. F. Sutcliffe ◽  
E. G. Kokko ◽  
J. L. Shipp

The innervation and internal ultrastructure of the antennal flagellar sensilla of female Simulium arcticum (cytotypes IIL-3 and IIS-10.11) are described from transmission electron micrographs. Two types of contact chemosensilla and at least four types of olfactory sensilla (sensilla trichodea, two or more types of sensilla basiconica, grooved pegs) were found. These correspond to sensillar types previously described from scanning electron micrographs of the antennae of these species. In addition, possible thermo- and hygro-receptive sensilla coeloconica are described from the antennal tip. The sensory complement of the simuliid antenna is compared with those of certain other dipterans, and possible roles of these sensilla in host location and other behaviours are discussed.


2020 ◽  
Vol 15 (2) ◽  
pp. 41-57
Author(s):  
Fatma Acheuk ◽  
◽  
Kemais Abdellaoui ◽  
Wassima Lakhdari ◽  
Nora Chahbar ◽  
...  

The insecticidal potential of the Saharan plant Cotula cinerea, was evaluated on two insect species namely Aphis fabae and Tribolium castaneum by topical application (contact toxicity) and repellency test. A crude ethanolic extract of aerial part of the plant was prepared and tested in the laboratory on adults of both species. For contact toxicity, five doses were tested on each of the two species 1.56, 3.12, 6.25, 12.5 and 25 mg/ml for A. fabae and 25, 50, 250, 350 and 500 µg/insect for T. castaneum. The repellency of the extract was studied at the dose 500 μg/insect for T. castaneum and 25 µg/ml for A. fabae. Results showed that the repellency of the extract increased with exposure time and the highest rates were observed after 4 h of exposure (72.33 ± 22% for T. castaneum and 87 ± 3.6% for A. fabae). For insecticidal activity, at the highest doses (25 mg/ml and 500 µg/ml), 100% mortality is obtained 72 h after treatment for A. fabae and after 48 h for T. castaneum. The extract of this plant was found to be more toxic against T. castaneum adults. LD50 calculated 24 h after treatment for the two species is estimated at 1.7 mg/ml for A. fabae and at 30.3 µg/insect for T. castaneum. The extract of this plant inhibited the activity of acetylcholinesterase (AChE) in both insect species. This result suggests that this plant has a neurotoxic effect on A. fabae and T. castaneum. The results of phytochemical study showed that the plant is mainly rich in flavonoids, gallic tannins, alkaloids, saponosides and glucosides. The insecticidal effect obtained in this study could be due to the synergetic action of all constituents of the extract. Results suggest the possibility of using the extracts of this plant in integrated pest management to replace the chemical insecticides.


2009 ◽  
Vol 99 (4) ◽  
pp. 393-400 ◽  
Author(s):  
N.M.P. Guedes ◽  
R.N.C. Guedes ◽  
G.H. Ferreira ◽  
L.B. Silva

AbstractInsects have evolved a variety of physiological and behavioral responses to various toxins in natural and managed ecosystems. However, insect behavior is seldom considered in insecticide studies although insects are capable of changing their behavior in response to their sensory perception of insecticides, which may compromise insecticide efficacy. This is particularly serious for insect pests that are physiologically resistant to insecticides since insecticide avoidance may further compromise their management. Locomotion plays a major role determining insecticide exposure and was, therefore, considered in investigating the behavioral responses of male and female adult insects from an insecticide-susceptible and two insecticide-resistant strains of the maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), a major pest of stored cereals. Different dose-dependent behavioral responses were expected among strains with behavioral resistance less likely to occur in physiologically resistant insects since they are able to withstand higher doses of insecticide. The behavioral responses to deltamethrin-sprayed surfaces differed among the maize weevil strains. Such responses were concentration-independent for all of the strains. Stimulus-independent behavioral resistance was unrelated to physiological resistance with one resistant strain exhibiting higher rates of flight take-off and the other resistant strain exhibiting lower flight take-off. Female mobility was similar for all strains, unlike male mobility. Males of each strain exhibited a pattern of mobility following the same trend of flight take-off. Behavioral patterns of response to insecticide are, therefore, variable among strains, particularly among insecticide-resistant strains, and worth considering in resistance surveys and management programs.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mariame Najem ◽  
Mohamed Bammou ◽  
Lamia Bachiri ◽  
El Houssine Bouiamrine ◽  
Jamal Ibijbijen ◽  
...  

Chemical pesticides used against insect pests of stored food have adverse effects on both health and the environment. So, the present study aims to evaluate the insect repulsive and insecticidal power of Ruta chalepensis L. essential oil (EO) from the region of Oulmes (Central plateau of Morocco); the ultimate objective is to develop a biological and ecological control strategy against pests. Thus, the EO obtained by hydrodistillation from the aerial parts of Ruta chalepensis L. was identified by GC-MS; its repellent and fumigant toxicity effects on adults of Tribolium castaneum Herbst were, respectively, investigated by the preferential area method on a filter paper and the inhalation test. The insecticide power was estimated by determining the percentage of mortality as a function of the duration of exposure and concentration of the EO. The essential oil obtained is characterized by the dominance of 2-undecanone (64.35%), piperonyl piperazine (11.9%), 2-decanaone (5.12%), 2-dodecanone (4.52%), decipidone (3.9%,) and 2-tridecanone (2.36%). This EO is endowed with a very repulsive power belonging to class V, which is strongly due to its majority compound 2-undecanone. The dose 0.038 μl/ml gave a repellent power of 100% after 15 min. The tests also revealed a considerable insecticidal effect, which reached 100% after 48 hours at a dose of 0.62 μl/ml. The calculation of the lethal dose causing 50% mortality (LD50) and the lethal times after which there is 50% mortality (LT50) allowed deducing that the insecticidal effect of Ruta chalepensis L. is time- and dose-dependent. Hence, the effectiveness of Ruta chalepensis L. EO attests that it can constitute a healthy alternative to fight against Tribolium castaneum Herbst.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 130
Author(s):  
Liwen Ding ◽  
Zongxin Guo ◽  
Hang Xu ◽  
Tie Li ◽  
Yuanyuan Wang ◽  
...  

Celangulin V (CV) is a compound isolated from Celastrus angulatus Max that has a toxic activity against agricultural insect pests. CV can bind to subunits a, H, and B of the vacuolar ATPase (V-ATPase) in the midgut epithelial cells of insects. However, the mechanism of action of CV is still unclear. In this study, the soluble complex of the V-ATPase A subunit mutant TSCA which avoids the feedback inhibition by the hydrolysate ADP and V-ATPase B subunit were obtained and then purified using affinity chromatography. The H+K+-ATPase activity of the complex and the inhibitory activity of CV on ATP hydrolysis were determined. The results suggest that CV inhibits the ATP hydrolysis, resulting in an insecticidal effect. Additionally, the homology modeling of the AB complex and molecular docking results indicate that CV can competitively bind to the AB complex at the ATP binding site, which inhibits ATP hydrolysis. These findings suggest that the AB subunits complex is one of the potential targets for CV and is important for understanding the mechanism of interaction between CV and V-ATPase.


Sign in / Sign up

Export Citation Format

Share Document