scholarly journals Effect of Temperature on the Development and Survival of Feltiella Acarisuga (Vallot) (Diptera: Cecidomyiidae) Preying on Tetranychus Urticae (Koch) (Acari: Tetranychidae)

Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 508
Author(s):  
Yong-Seok Choi ◽  
Sung-Hoon Baek ◽  
Min-Jung Kim

The predatory gall midge, Feltiella acarisuga (Vallot) (Diptera: Cecidomyiidae), is an acarivorous species that mainly feeds on spider mites (Acarina: Tetranychidae). Because of its cosmopolitan distribution and predation efficacy, it is considered an important natural enemy available as a biological agent for augmentative biocontrol. However, despite its practical use, the thermal development and survival response to temperature have not yet been fully studied. In this study, we investigated the stage-specific development and survival of F. acarisuga at seven temperatures (11.5, 15.7, 19.8, 23.4, 27.7, 31.9, and 35.4 °C) to examine the effect of temperature on its lifecycle. All developmental stages could develop at 11.5–31.9 °C, but the performance was different according to the temperature. From the linear development rate models, the lower development threshold and thermal constant of the total immature stage were estimated at 8.2 °C and 200 DD, respectively. The potential optimal and upper threshold temperatures for the total immature stage were estimated as 29.3 and 35.1 °C using a non-linear development model. The operative thermal ranges for development and survival at 80% of the maximum rate were 24.5–32.3 and 14.7–28.7 °C, respectively. Thus, it was suggested that 24.5–28.7 °C was suitable for the total immature stage. In contrast, conditions around 8 °C and 35 °C should be avoided due to the lower development rate and high mortality. Our findings provide fundamental information for an effective mass-rearing and releasing program of F. acarisuga in an augmentative biocontrol program and help to predict phenology.

2010 ◽  
Vol 40 (No. 1) ◽  
pp. 11-15 ◽  
Author(s):  
V. Stejskal ◽  
J. Lukáš ◽  
R. Aulický

The effect of temperature on the development of the 1<SUP>st</SUP> instar of <I>Periplaneta australasiae</I> (Fabr.) was studied at the four constant temperatures of 21°C, 24°C, 27°C and 30°C in temperature-controlled chambers. Mortality was 50% at 30°C, and 10% at 21°C, 24° and 27°C. Thermal constants were established by plotting linear regression to development rate. The thermal threshold for the development was 17.1°C and the thermal constant for 1<SUP>st</SUP> instar larvae was 147.1 day-degrees. As “safe temperature” (<I>t<SUB>s</SUB></I>) – the temperature to be maintained in stores or food premises to prevent the development of a pest species – we recommend 16°C.


2020 ◽  
Vol 113 (4) ◽  
pp. 1675-1684 ◽  
Author(s):  
Nancy A Power ◽  
Fatemeh Ganjisaffar ◽  
Thomas M Perring

Abstract Bagrada hilaris (Burmeister) is an invasive pest of cole crops in the southwestern United States. To find potential biocontrol agents of B. hilaris, three egg parasitoids were imported from Pakistan, including Ooencyrtus mirus, a recently described uniparental species. We investigated the effect of temperature on survival and developmental rate in O. mirus from egg to adult. At 14 and 16°C, no adults emerged unless the immatures were transferred later to a warmer temperature. At constant 18°C, a low percentage emerged, but again more emerged if the immatures were transferred to a warmer temperature. Survival ranged from 80 to 96% at 20–37°C and did not differ significantly among these temperatures. No adults emerged at 38°C. Regardless of the amount of time the parasitized eggs were held at 14 and 16°C, the developmental times after returning the eggs to 26°C were similar, suggesting a quiescence process rather than simply slow development. At higher temperatures, the developmental rate increased linearly from 18 to 36°C and then declined at 37°C. The Wang model provided the best fit of the data and estimated a lower developmental threshold at 13.0°C, an optimal temperature at 35.6°C, and an upper developmental threshold of 38.3°C. The thermal constant for total immature development is 168.4 degree-days. The results show 36°C to be the best temperature for rearing O. mirus, and that O. mirus-parasitized eggs can be stored at 14°C for months without losing viability. These are crucial data to consider when mass rearing this biological control agent.


Zygote ◽  
2016 ◽  
Vol 24 (6) ◽  
pp. 795-807 ◽  
Author(s):  
Matheus Pereira dos Santos ◽  
George Shigueki Yasui ◽  
Pedro Luiz Porfírio Xavier ◽  
Nadya Soares de Macedo Adamov ◽  
Nivaldo Ferreira do Nascimento ◽  
...  

SummaryThe aim of this study was to describe the morphology of gametes, post-fertilization events and subsequent temperature effects on the early developmental stages of the neotropical species Astyanax altiparanae. The sperm of this species presents a typical morphology of teleost sperm with a spherical head (diameter = 1.88 µm), midpiece (diameter = 0.75 µm) and a single flagellum (length = 18.67 µm). The extrusion of the second polar body and fusion of male and female pronucleus were reported for the first time in this species. Additionally, we observed the formation of the fertilization cone, which prevents polyspermic fertilization. Developmental stages at 22°C, 26°C and 30°C gave rise to fertilization rates at 91.12, 91.42 and 93.04% respectively. Hatching occurred at 25 hpf at 22°C, 16 hpf at 26°C and 11 hpf at 30°C and the hatching rates were 61.78%, 62.90% and 59.45%, respectively. At 22°C, the second polar body was extruded at ≈6 mpf and the male and female pronucleus fused at ≈10 mpf. This fundamental information is important for the field and opens up new possibilities in fish biotechnology, including micromanipulation and chromosome-set manipulation.


1981 ◽  
Vol 113 (7) ◽  
pp. 569-574 ◽  
Author(s):  
A. B. Stevenson

AbstractThe effect of temperature on development of the carrot rust fly, Psila rosae (F.), was determined at constant temperatures in the laboratory. The relationship between rate of development and temperature was essentially linear from 10° to 17.5°C but began to diverge from linearity between 17.5° and 20°C. Estimated threshold temperatures (t) and thermal constants (K) for development of overwintered pupae were 2.3°C and 319 degree-days (dd) for first emergence and 1.8°C and 368 dd for 50% emergence. For laboratory-reared stages, t and K values were 4.1°C and 102 dd for egg hatch, 2.0°C and 642 dd for development from egg to mature larvae, and 3.0°C and 107 dd for pupation. Development in the laboratory from egg (less than 24 h old) to adult was completed in 59, 70, and 81 days at 20°, 17.5°, and 15°C respectively; no threshold or thermal constant was estimated because few or no individuals completed development to adult at 12.5° or 10°C within expected times, presumably because diapause was induced at these temperatures.


Author(s):  
Halina Kucharczyk ◽  
Marek Kucharczyk ◽  
Krystyna Winiarczyk ◽  
Magdalena Lubiarz ◽  
Dorota Tchórzewska

Thrips nigropilosus Uzel is a polyphagous species occurring mainly in temperate climates. Its life cycle de- pends on photoperiodic and temperature conditions. T. nigropilosus feeds on different plant species, but it is considered one of the most serious pests of pyrethrum plants causing serious economic problems. However, several additional agricultural host plants have been affected by T. nigropilosus, including spearmint, cu- cumber, and lettuce, indicating that this insect can significantly widen its habitats and occurs especially frequently in greenhouses. We report that T. nigropilosus massively attacked Mentha × piperita L. cultivated in greenhouses in central Poland and destroyed the entire mint crops within a short time. The study provided insight into the harmful effect of the thrips and showed that the length of the thrips developmental cycle was reduced with temperature increases from 18 to 26.6°C. The lower threshold temperatures were 13.7, 10.2, 5.0, and 10.1 for eggs, larvae, pupae, and total development, respectively, and the thermal constant for the same developmental stages was 65.9, 90, 132.5, and 284.9-degree days. Both parameters were estimated by linear regression analysis. During our experiment, T. nigropilosus developed by thelytokous parthenogenesis. The morphological and anatomical changes in damaged plants were associated with the fact that the insect began feeding on the lower lamina surface close to the leaf midribs, but no damage to vascular bundles and glandular cells was observed.


1991 ◽  
Vol 39 (2) ◽  
pp. 191 ◽  
Author(s):  
JG Hamilton ◽  
MP Zalucki

C. plebejana were reared from egg to adult at a range of constant temperatures. At 10-degrees-C no immature stages survived. Development rates increased over the temperature range 14-34-degrees-C; these were simulated with a non-linear model. Females emerged before males. Fecundity decreased with increased rearing temperature as a direct result of reduced adult female weight. At 34-degrees-C development rate and survival were reduced and all eggs laid were infertile. Optimum temperature for population increase was 28-degrees-C. Validation of a non-linear model for development rate shows that the species of host-plant affects mean development rates of tipworm. Although 5.3 tipworm generations are possible on cotton annually, only one occurs; reasons for this are suggested.


2000 ◽  
Vol 203 (4) ◽  
pp. 685-692 ◽  
Author(s):  
P. Nordstrom ◽  
E.J. Warrant

In this paper, we describe the hitherto largely overlooked effect of temperature on the pupil of insect compound eyes. In the turnip moth Agrotis segetum and in two other nocturnal insects with superposition eyes, the lacewing Euroleon nostras and the codling moth Cydia pomonella, the pupil not only opens and closes with changes in the ambient light level, as expected, but also with changes in temperature in the absence of light. In complete darkness, the pupil of A. segetum responds over a wide range of temperatures, with the pupillary pigments migrating to a light-adapted position when the animal is exposed to either low or high temperatures. At temperatures between 21.0 and 22.7 C, the pigments migrate to the fully dark-adapted position, resulting in an open pupil and maximal eye glow. Pupil closure at high temperatures shows two distinct thresholds: the first at 23.8+/−0.7 C and a second some degrees higher at 25.7+/−1.2 C (means +/− s.d., N=10). Temperatures exceeding the first threshold (the activation temperature, T(a)) initiate a closure of the pupil that is completed when the temperature exceeds the second threshold (the closure temperature, T(c)), which causes rapid and complete migration of pigment to the light-adapted position. All temperatures above T(a) affect the pupil, but only temperatures exceeding T(c) result in complete closure. Temperatures between T(a) and T(c) cause a slow, partial and rather unpredictable closure. The lacewing and the codling moth both show very similar responses to those of A. segetum, suggesting that this response to temperature is widespread in superposition eyes. The possibility that the ambient temperature could be used to pre-adapt the eye to different light intensities is discussed.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 228 ◽  
Author(s):  
Hannalene Du Plessis ◽  
Marie-Louise Schlemmer ◽  
Johnnie Van den Berg

The fall armyworm (Spodoptera frugiperda) is a pest of tropical origin which recently invaded Africa, the Far East and Australia. Temperature, therefore, plays an important role in its invasion biology, since this pest does not go into diapause. The aim of this study was to determine the development rate of S. frugiperda at different temperatures and to calculate the number of degree-days (°D) required for each stage to complete its development. This study was conducted at five different temperatures—18, 22, 26, 30 and 32 ± 1 °C. Larvae were reared individually in Petri dishes with sweetcorn kernels provided as food. The development rate of S. frugiperda increased linearly with increasing temperatures between 18 and 30 °C and larval survival was the highest between 26 and 30 °C. The optimal range for egg, larval and egg-to-adult development was between 26 and 30 °C. The optimum temperature with the fastest larval development rate and lowest mortality was at 30 °C. The pupal development period ranged between 7.82 and 30.68 days (32–18 °C). The minimum temperature threshold for egg and larva development was 13.01 and 12.12 °C, respectively, 13.06 °C for pupae and 12.57 °C for egg-to-adult development. Degree-day requirements for the development of the respective life cycle stages of S. frugiperda were 35.68 ± 0.22 for eggs, 204.60 ± 1.23 °D for larvae, 150.54 ± 0.93 °D for pupae and 391.61 ± 1.42 °D for egg-to-adult development.


2017 ◽  
Vol 53 (No. 4) ◽  
pp. 226-231 ◽  
Author(s):  
Liu Junhe ◽  
Yan Yan ◽  
Yu Mingfu ◽  
Parajulee Megha N ◽  
Shi Peijian ◽  
...  

Temperature has a significant influence on development rates of insects and mites. Many parametric models were built to describe the temperature-dependent development rates. However, these models provided different shapes of the curves of development rate versus temperature. For different datasets, investigators have to spend much time on considering which the parametric model is the best for describing the temperature-dependent development rates. In the present study, we encourage investigators to use an important non-parametric model, the loess method, which belongs to local regression methods. The loesS method is used to fit some published data on the development rate of aphids to check the goodness-of-fit. We find that the loess method is very flexible for fitting the given datasets. Thus, we consider that the loess method can be used to describe the effect of temperature on the development rate of insects or mites.


Sign in / Sign up

Export Citation Format

Share Document