scholarly journals A Review of Alternative Controls for House Flies

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1042
Author(s):  
Nancy C. Hinkle ◽  
Jerome A. Hogsette

House flies are the most prevalent synanthropic pest worldwide. Although they seldom reproduce in homes, they invade buildings, cause annoyance, and carry pathogens. Urban pest management personnel are limited in their ability to locate and manage larval habitats, so most house fly management in urban settings focuses on adult fly suppression. Sanitation is probably the most critical component, eliminating odors that attract flies. Source reduction applies where larval habitats can be identified and eliminated. Exclusion involves keeping flies out of structures. Despite all efforts, flies will manage to enter the human environment, so exclusion includes air curtains, fans, screened windows, and doors. Ultraviolet light traps attract and immobilize, while window traps entice flies into devices that entrap them. Sticky tubes and ribbons rely on flies’ inclination to land on vertical lines to entangle them in glue. Even low-tech fly swatters can play significant roles in eliminating individual flies. Timed-release aerosol pyrethrin dispensers can be effective against flies confined in enclosed spaces. Toxic baits have limited use in urban settings. Chemical suppression remains a critical component of fly IPM, essential in situations requiring immediate fly elimination.

Author(s):  
M. Colacci ◽  
G. Spina ◽  
M. Boccamazzo ◽  
A. Sciarretta ◽  
P. Trematerra

Results regarding the combination of light-traps and coloured glue-boards for the trap and control of the house fly, Musca domestica L. (Diptera: Muscidae), are reported. Monitoring was performed using as basic structure PRO 80S UV fluorescent fly traps in a confinement swine farm in the south of Italy. During the trials, neon traps with a combination of glue-boards (yellow vs black and yellow vs white) and neon vs LED traps with yellow glue-boards were evaluated. Results indicated that yellow and black glue-boards were equally attractive to flies, with no significant differences. Light-traps captured significantly more flies when a white glue-board was used rather than a yellow panel. The neon lamp attracted significantly more flies than the LED lamp. According to our results, light-traps with white panels have potential to be employed in Integrated Pest Management (IPM) programs for monitoring and controlling house flies in livestock farms and in food processing, reducing risks in dissemination of pathogens which have the potential to affect humans or animals.


1973 ◽  
Vol 105 (5) ◽  
pp. 709-718 ◽  
Author(s):  
H. G. Wylie

AbstractFemales of Nasonia vitripennis (Walk.) lay a smaller percentage of fertilized (i.e. female) eggs on house fly, Musca domestica L., pupae previously parasitized by their own species, by Muscidifurax zaraptor K. & L., or by Spalangia cameroni Perk. (Hymenoptera: Pteromalidae) than on unparasitized hosts. They respond to changes in the fly pupae associated with death, and in the case of house flies attacked by N. vitripennis, to "venoms" injected at that time or to changes unrelated to death. By not fertilizing eggs that they lay on attacked hosts, the females also conserve sperm, for immature N. vitripennis on previously-attacked fly pupae are usually killed by parasite larvae already present.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249496
Author(s):  
Saad M. Alzahrani

This study was conducted to determine the susceptibility and resistance of some house fly strains of Musca domestica L. to the insect growth regulator insecticides triflumuron and pyriproxyfen in some locations in Riyadh city. Field-collected strains of M. domestica L. from five sites in Riyadh city that represented five slaughterhouse sites where flies spread significantly were tested against triflumuron and pyriproxyfen. Triflumuron LC50 values for the five collected strains ranged from 2.6 to 5.5 ppm, and the resistance factors (RFs) ranged from 13-fold to 27-fold that of the susceptible laboratory strain. Pyriproxyfen LC50 values for the field strains ranged from 0.9 to 1.8 ppm with RFs of 3-fold to 5-fold. These results indicate that pyriproxyfen is an effective insecticide to control house flies and should be used in rotation with other insecticides in the control programs applied by Riyadh municipality.


2018 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Suriyani Tan ◽  
Machrumnizar Machrumnizar

Muscadomestica (house fly) is an insect that is considered useless by humans although they lived very close to humans. Breeding site of flies in human or animal waste, the rubbish, or unorganic objects that have decayed greatly support their role as mechanical vectors. More than 20 species of flies have been reported as an agent of gastrointestinal diseases. The purpose of this study is to examnine the role of houseflies as mechanical vectors Ascarislumbricoides’seggs.The research sample was 500 house flies (Muscadomestica) captured in the Legok area. Houseflies were trapped by fly trap containing rotten fish meat and then stored at a temperature of 4 degree celcius. The samples were divided into six groups according to the sampling areas, crushed and checked directly by using a light microscope. Ascarislumbricoides eggs are not found in all groups of samples. The study concluded that Muscadomestica is not a mechanical vector of infective eggs of Ascarislumbricoides in Tangerang City, Banten Province.


Author(s):  
Elizabeth V Tuorinsky ◽  
Erika T Machtinger

Abstract House flies can have negative consequences on the welfare of horses and other equids. Fly repellents in the form of on-animal sprays, wipes, or spot-ons are the most commonly used fly control method for horses. Many products are available, but repellent efficacy and duration of effectiveness may influence repellent choice by horse owners. A better understanding of the efficacy of common fly repellent products will help guide repellent selection to reduce fly pressure on horses. To evaluate commercially available repellents, house fly behavioral inhibition after application of three products marketed as natural (Ecovet, Equiderma, and Outsmart) and four with synthetic pyrethroids as active ingredients (Bronco, Endure, UltraShield, and Optiforce) was compared at 100, 50, and 25% concentration and at 15, 30, 60, 240, 1,440, and 2,880 min. Time and product were significant at all tested concentrations. The natural products performed as well as or better than the synthetic products at all dilutions and times. Ecovet in particular retained over 75% inhibition of flies for >1 d at the 100 and 50% concentrations. Differences were seen among products with pyrethroids, suggesting that formulation differences significantly affect efficacy. Cost and application suggestions are discussed, and these results will aid horse owners in selecting fly repellents to meet their individual needs.


1985 ◽  
Vol 75 (1) ◽  
pp. 143-158 ◽  
Author(s):  
I. Denholm ◽  
R. M. Sawicki ◽  
A. W. Farnham

AbstractWays in which the bionomics and dynamics of populations of Musca domestica L. can influence the development of insecticide resistance, and how resistance genes spread within and between farms was investigated in a three-year study of the biology and movement of flies on 63 pig-rearing farms in south-eastern England. House-flies survived winter only on 12 ‘overwintering’ farms where they bred in heated pig-rearing houses (‘closed buildings’) throughout the year. In late spring they appeared out doors, and their descendents founded populations on neighbouring ‘summer’ farms where pigs breed only in unheated (‘open’) buildings. There, flies reached peak numbers in August–September and died out by mid-November. Gene flow within and between farms was studied indirectly by mark-release-recapture of colour-marked adults, and directly by monitoring the diffusion of the visible marker gene bwb (brown body) introduced into indigenous house-fly populations. Although movement between open buildings within a farm was unrestricted, dispersal between farms was limited, and gene flow between even adjacent closed buildings was indirect, and required more than one generation. Likewise, indirect and gradual gene flow during summer probably accounted for the similarity in type and frequency of other independent genetic markers of local overwintering populations. Thus closed buildings played a key role in house-fly ecology and population genetics. Unfortunately, control with persistent insecticides in these buildings ensures efficient resistance selection, ultimately resulting in its spread to all pig farms. Less selective control practices are needed at these sites.


Insects ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 47 ◽  
Author(s):  
Dalton Baker ◽  
Steven Rice ◽  
Diana Leemon ◽  
Rosamond Godwin ◽  
Peter James

The control of house flies, Musca domestica (L.), currently relies on the use of chemical insecticide spray and bait formulations. Entomopathogenic fungi, such as Metarhizium anisopliae, may provide an alternative to these products. This study aimed to develop and evaluate a mycoinsecticide bait formulation containing a virulent M. anisopliae isolate. Five M. anisopliae isolates were screened against M. domestica and isolate M16 was selected for bait development. Bait formulations containing a variety of additives, including (Z)-9-tricosene, were tested for their ability to increase fly visitation. A bait formulation containing M. anisopliae and skim milk powder was found to have the highest house fly visitation and was subsequently compared to a conventional chemical bait in an efficacy assay. The chemical bait (0.5% imidacloprid) caused faster mortality than the mycoinsecticide bait, however, similar levels of mortality were achieved by 4–5 days’ post exposure. These results suggest that M. anisopliae mycoinsecticide baits may offer an alternative to conventional chemical insecticides for the control of house flies in suitable areas.


2020 ◽  
Vol 6 (3) ◽  
pp. 221-229
Author(s):  
A. van Huis ◽  
D.G.A.B. Oonincx ◽  
S. Rojo ◽  
J.K. Tomberlin

Industrialised rearing of house flies and black soldier flies in systems for producing protein offers numerous species-specific benefits and challenges. These two dipteran species offer great potential for mass production of protein rich feed ingredients on a global scale. Through this systematic review, various facets of intensive production of these species are evaluated according to criteria, such as development time, abiotic tolerance, ease of rearing, environmental impact, safety risks, range of possible organic side streams, and their role in bioconversion.


1948 ◽  
Vol 39 (3) ◽  
pp. 339-357 ◽  
Author(s):  
Sonti Dakshinamurty

The study of the common house-fly,Musca domestica, L., has not received the attention it merits by medical entomologists. Although the correlation betweenfly-borne diseasesandclimatic factorshas interested several workers, this correlation has not been satisfactorily explained. An investigation of the influence ofclimatic factorson house-flies was therefore undertaken.House-flies can be reared in the laboratory by a proper choice of the breeding medium and suitable technique. Manures, kitchen refuse and synthetic media may be used but the last mentioned is recommended for the production of a supply of standard insects.M. domesticachooses the lower humidity on each of the humidity gradients, 20–40, 40–60, 60–80 and 80–100 per cent., at a constant temperature of 25°C. The choice is significant for both sexes, and for dry and wet flies, except for dry flies at the range 60–80 per cent.The house-fly chooses 30°C. in temperature gradients of 20–30°C. and 30–40°C. at constant humidity, expressed either in the R.H. or the S.D. scale. It chooses 30°C. with dry air if possible, but with moist air if it must. In a gradient of 33–27°C. where dry air is associated with 33°C. in the S.D. scale in the one case, and 27°C. in the R.H. in the other, it chooses 33°C. or 27°C. according as it coincides with dry air. Dry air as represented by low R.H. or high S.D. did not make any difference to its choice, consequently it is not possible to decide whether house-flies choose by the R.H. scale or the S.D. scale. The activity ofM. domesticato different combinations of temperature and humidity shows maximum activity with high temperature and low humidity, minimum with high temperature and high humidity; while in the case of low temperature combinations with either high or low humidity, activity lies intermediate in degree. High and low temperatures and high and low humidity within themselves also show significant results by the χ2test.The experimental results are explained on physiological grounds and the results obtained in these experiments are compared with those of other workers on similar problems on a variety of insects.The general experience with regard to house-flies in the field is explained in the light of these laboratory findings.For a correct analysis of the behaviour of the house-fly in nature, biological stimuli such as feeding, breeding and resting habits must be considered quantitatively in relation to environmental factors such as temperature, humidity, rainfall and light. The present work forms part of such a study.


Sign in / Sign up

Export Citation Format

Share Document