scholarly journals Liver X Receptor Expression and Pentraxin 3 Production in Chronic Rhinosinusitis and Sinonasal Mucosal Fibroblast Cells

2021 ◽  
Vol 10 (3) ◽  
pp. 452
Author(s):  
Yih-Jeng Tsai ◽  
Ping-Hung Shen ◽  
Sheng-Dean Luo ◽  
Wen-Bin Wu

The long pentraxin 3 (PTX3) is a prototypic molecule for recognizing pathogens. Liver X receptors (LXRs), belonging to nuclear receptors (NRs) for cholesterol metabolism through heterodimerizing with other NRs, were recently reported to participate in inflammation. However, their roles in chronic rhinosinusitis without nasal polyps (CRSsNP) are unclear. Therefore, this study was sought to explore roles of LXRs in chronic rhinosinusitis (CRS) sinonasal tissues and derived fibroblasts. Immunohistochemistry indicated that LXRα and β expression and lipid/fat deposition were differentially expressed in the control and CRSsNP nasal mucosa. GW7647 (a peroxisome proliferator activated receptor α (PPARα) agonist) and GW3965 (a dual agonist for LXRα and β) significantly caused PTX3 induction in the fibroblast cells. GW3965 induced PTX3 mRNA and protein expression, and the induction substantially led to PTX3 secretion. Meanwhile, an endogenous agonist-cholesterol had a similar enhancing effect on the induction of PTX3 protein. LXR siRNA knockdown to lower LXRα or β expression significantly compromised PTX3 induction. Interestingly, GW3965 also induced phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) activation and its inhibition reduced PTX3 expression. Collectively, we demonstrated here for the first time that CRSsNP nasal mucosa differentially expresses LXRα and β and deposits lipids/fats that may contain cholesterol metabolites to activate LXRs. Activation of LXRs leads to PTX3 production in sinonasal mucosa-derived fibroblasts. Our previous study showed PTX3 overexpression in the nasal cavity of CRSsNP, whereas this study highlights that cholesterol metabolites and LXR activation regulate PTX3 production and may contribute to antimicrobial activity and tissue repair during CRSsNP progression.

2021 ◽  
Vol 22 (11) ◽  
pp. 6074
Author(s):  
Maciej Danielewski ◽  
Agnieszka Matuszewska ◽  
Adam Szeląg ◽  
Tomasz Sozański

Nutrition determines our health, both directly and indirectly. Consumed foods affect the functioning of individual organs as well as entire systems, e.g., the cardiovascular system. There are many different diets, but universal guidelines for proper nutrition are provided in the WHO healthy eating pyramid. According to the latest version, plant products should form the basis of our diet. Many groups of plant compounds with a beneficial effect on human health have been described. Such groups include anthocyanins and iridoids, for which it has been proven that their consumption may lead to, inter alia, antioxidant, cholesterol and lipid-lowering, anti-obesity and anti-diabetic effects. Transcription factors directly affect a number of parameters of cell functions and cellular metabolism. In the context of lipid and cholesterol metabolism, five particularly important transcription factors can be distinguished: liver X receptor (LXR), peroxisome proliferator-activated receptor-α (PPAR-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBPα) and sterol regulatory element-binding protein 1c (SREBP-1c). Both anthocyanins and iridoids may alter the expression of these transcription factors. The aim of this review is to collect and systematize knowledge about the impact of anthocyanins and iridoids on transcription factors crucial for lipid and cholesterol homeostasis.


2001 ◽  
Vol 354 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Delphine HOURTON ◽  
Philippe DELERIVE ◽  
Jana STANKOVA ◽  
Bart STAELS ◽  
M. John CHAPMAN ◽  
...  

Regulation of the expression of platelet-activating factor (PAF) receptor by atherogenic lipoproteins might contribute to atherogenesis. We show that progressive oxidation of low-density lipoprotein (LDL) gradually inhibits PAF receptor expression on the macrophage cell surface. We tested the effect of oxidized LDL (oxLDL) on PAF receptor expression in human monocytes that do not contain peroxisome-proliferator-activated receptor γ (PPARγ), a nuclear receptor activated by oxLDL. OxLDL decreased by 50% (P ⩽0.001) and by 29% (P⩽0.05) the binding of PAF and the expression of PAF receptor mRNA respectively. Next we demonstrated that progressive oxidation of LDLs significantly activated PPARα-dependent transcription in transfected mouse aortic endothelial cells. Finally we demonstrated, in mature macrophages, that fenofibrate (20µM), a specific PPARα agonist, but not the specific PPARγ agonist BRL49653 (20nM), significantly decreased both PAF binding and PAF receptor mRNA expression, by 65% and 40% (P⩽0.001) respectively. Additionally, another PPARα agonist, Wy14,643, decreased PAF receptor promoter activity by 70% (P⩽0.05) in transfected THP-1 cells, suggesting the involvement of the proximal promoter region (-980 to -500) containing a series of four nuclear factor (NF)-κB motifs. Thus PPARα might be involved in the down-regulation of PAF receptor gene expression by oxLDLs in human monocytes/macrophages. The oxidation of one or more lipid components of LDLs might result in the formation of natural activators of PPARα. It is hypothesized that such activators might modulate inflammation and apoptosis upon atherogenesis by decreasing the expression of PAF receptor.


2010 ◽  
Vol 31 (4) ◽  
pp. 626-638 ◽  
Author(s):  
E. K. Lee ◽  
M. J. Lee ◽  
K. Abdelmohsen ◽  
W. Kim ◽  
M. M. Kim ◽  
...  

Medicina ◽  
2019 ◽  
Vol 55 (9) ◽  
pp. 514 ◽  
Author(s):  
Reiss ◽  
Arain ◽  
Kasselman ◽  
Renna ◽  
Zhen ◽  
...  

Background and Objectives: Atherosclerotic cardiovascular disease (CVD) remains a major cause of morbidity and mortality in persons with systemic lupus erythematosus (SLE, lupus). Atherosclerosis, which involves interplay between cholesterol metabolism and cellular inflammatory pathways, is primarily treated with statins since statins have lipid-lowering and anti-inflammatory properties. The Lupus Atherosclerosis Prevention Study (LAPS) was designed to investigate the efficacy of statins against CVD in SLE patients. LAPS demonstrated that 2 years of atorvastatin administration did not reduce atherosclerosis progression in lupus patients. In this LAPs substudy, we use cultured macrophages to explore the atherogenic properties of plasma from LAPS subjects to explain the mechanistic rationale for the inability of statins to reduce CVD in lupus. Materials and Methods: THP-1 differentiated macrophages were treated for 18 h with 10% SLE patient plasma obtained pre- and post-atorvastatin therapy or placebo. Gene expression of the following cholesterol transport genes was measured by qRT-PCR. For efflux—ATP binding cassette transporter (ABC)A1 and ABCG1, 27-hydroxylase, peroxisome proliferator-activated receptor (PPAR)γ, and liver X receptor (LXR)α; and for influx—cluster of differentiation 36 (CD36) and scavenger receptor (ScR)A1. Results: Macrophages exposed to plasma from both statin-treated and placebo-treated groups showed a significant decrease in cholesterol efflux proteins ATP binding cassette (ABC) transporters A1 and ABCG1, an increase in 27-hydroxylase, an increase in the LDL receptor and a decrease in intracellular free cholesterol. No change in influx receptors ScRA1 and CD36, nor nuclear proteins LXRα and PPARγ was observed. Conclusions: Statins do not normalize pro-atherogenic changes induced by lupus and these changes continue to worsen over time. This study provides mechanistic insight into LAPS findings by demonstrating that statins are overall ineffective in altering the balance of cholesterol transport gene expression in human macrophages. Furthermore, our study suggests that statins as a CVD treatment may not be useful in attenuating lipid overload in the SLE environment.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Heidi N. Bagley ◽  
Yan Wang ◽  
Michael S. Campbell ◽  
Xing Yu ◽  
Robert H. Lane ◽  
...  

Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor-γ2 (PPARγ2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPARγincreases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPARγagonist, would normalize IUGR adipose deposition in association with increased PPARγ, adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPARγexpression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.


Sign in / Sign up

Export Citation Format

Share Document