scholarly journals Protein Kinase A Detection in Human Urine Samples

2021 ◽  
Vol 10 (18) ◽  
pp. 4096
Author(s):  
Angela Ragone ◽  
Alessia Salzillo ◽  
Annamaria Spina ◽  
Silvia Zappavigna ◽  
Michele Caraglia ◽  
...  

Actively involved in tumor maintenance, cAMP-dependent protein kinase A (PKA) has been proposed as a putative biomarker in cancer. Recently, an active PKA form has been identified in human sera and PKA autoantibodies have been detected in cancer patients. However, their serum functions, as well as diagnostic significance, remain largely unknown. Although several PKA detection assays have been developed, none refer to a laboratory diagnostic procedure. Among these, ELISA and Western blotting (WB) assays have been employed in PKA detection. Since, to the best of our knowledge, there are no data showing its presence in human urine samples, herein, we explore the possibility of PKA’s existence in this biological specimen. Interestingly, among the 30 screened urines by quantitative sandwich ELISA, we recognized detectable PKA levels in 5 different samples, and of those two exhibited a considerable high concentration. To corroborate these results, we also evaluated PKA’s presence in both positive and negative ELISA urines by WB. Remarkably, immunoblotting analysis confirmed PKA’s existence in certain, but not in all, human urine specimens. Despite being quite preliminary, these findings firstly identify PKA in urine samples and provide evidence for its potential clinic usage as a diagnostic analyte in laboratory medicine.

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4075
Author(s):  
Ji-Eun Lee ◽  
Woo-Jin Song ◽  
Hunjoo Lee ◽  
Byung-Gak Kim ◽  
Taeho Kim ◽  
...  

The early detection of tumors improves chances of decreased morbidity and prolonged survival. Serum biomarkers are convenient to use and have several advantages over other approaches, such as accuracy and straightforward protocols. Reliable biomarkers from easily accessible sources are warranted for the development of cost-effective assays for routine screening, particularly in veterinary medicine. Extracellular c-AMP-dependent protein kinase A (ECPKA) is a cytosolic leakage enzyme. The diagnostic accuracy of detecting autoantibodies against ECPKA was found to be higher than that of ECPKA activity from enzymatic assays, which use a complicated method. Here, we investigated the diagnostic significance of measuring serum ECPKA autoantibody levels using an in-house kit (AniScan cancer detection kit; Biattic, Anyang, Korea). We used sera from 550 dogs, including healthy dogs and those with malignant and benign tumors. Serum ECPKA and immunoglobulin G were determined using the AniScan cancer detection kit. ECPKA autoantibody levels were significantly higher (p < 0.01) in malignant tumors than in benign tumors, non-tumor diseases, and healthy controls. On the basis of sensitivity and specificity values, AniScan ECPKA is a rapid and easy-to-use assay that can be applied to screen malignant tumors from benign tumors or other diseases in dogs.


2001 ◽  
Vol 281 (6) ◽  
pp. H2295-H2303 ◽  
Author(s):  
Mark T. Ziolo ◽  
Hideki Katoh ◽  
Donald M. Bers

Nitric oxide (NO) can have a positive or negative effect on cardiac contractility and the ryanodine receptor (RyR). This dual effect has been explained as being dependent on the concentration of NO. We find that cellular RyR response to NO is also dependent on the degree of β-adrenergic stimulation, and thus the state of protein kinase A activation. Ca2+ spark frequency (CaSpF) in rat ventricular myocytes was used as an index of resting RyR activity. CaSpF response to β-adrenergic stimulation was used as an index of protein kinase A activation. High concentration of isoproterenol, a β-adrenergic agonist, caused a large increase in CaSpF; addition of NO (spermine NONOate, 300 μM) then caused a decrease in CaSpF. Low concentration of isoproterenol produced only a slight increase in CaSpF, but the same NO concentration now caused a large increase in CaSpF. A dual effect was also observed in twitch. Thus the net direction of the effects of NO on RyR activity and Ca2+transients (directly or by alteration of sarcoplasmic reticulum Ca2+ load) can be reversed, depending on the ambient level of β-adrenergic activation.


2004 ◽  
Vol 279 (44) ◽  
pp. 45455-45461 ◽  
Author(s):  
Oleg Dyachok ◽  
Erik Gylfe

Hormones, such as glucagon and glucagon-like peptide-1, potently amplify nutrient stimulated insulin secretion by raising cAMP. We have studied how cAMP affects Ca2+-induced Ca2+release (CICR) in pancreatic β-cells from mice and rats and the role of CICR in secretion. CICR was observed as pronounced Ca2+spikes on top of glucose- or depolarization-dependent rise of the cytoplasmic Ca2+concentration ([Ca2+]i). cAMP-elevating agents strongly promoted CICR. This effect involved sensitization of the receptors underlying CICR, because many cells exhibited the characteristic Ca2+spiking at low or even in the absence of depolarization-dependent elevation of [Ca2+]i. The cAMP effect was mimicked by a specific activator of protein kinase A in cells unresponsive to activators of cAMP-regulated guanine nucleotide exchange factor. Ryanodine pretreatment, which abolishes CICR mediated by ryanodine receptors, did not prevent CICR. Moreover, a high concentration of caffeine, known to activate ryanodine receptors independently of Ca2+, failed to mobilize intracellular Ca2+. On the contrary, a high caffeine concentration abolished CICR by interfering with inositol 1,4,5-trisphosphate receptors (IP3Rs). Therefore, the cell-permeable IP3R antagonist 2-aminoethoxydiphenyl borate blocked the cAMP-promoted CICR. Individual CICR events in pancreatic β-cells were followed by [Ca2+]ispikes in neighboring human erythroleukemia cells, used to report secretory events in the β-cells. The results indicate that protein kinase A-mediated promotion of CICR via IP3Rs is part of the mechanism by which cAMP amplifies insulin release.


Reproduction ◽  
2000 ◽  
pp. 377-383 ◽  
Author(s):  
L Leonardsen ◽  
A Wiersma ◽  
M Baltsen ◽  
AG Byskov ◽  
CY Andersen

The mitogen-activated protein kinase-dependent and the cAMP-protein kinase A-dependent signal transduction pathways were studied in cultured mouse oocytes during induced and spontaneous meiotic maturation. The role of the mitogen-activated protein kinase pathway was assessed using PD98059, which specifically inhibits mitogen-activated protein kinase 1 and 2 (that is, MEK1 and MEK2), which activates mitogen-activated protein kinase. The cAMP-dependent protein kinase was studied by treating oocytes with the protein kinase A inhibitor rp-cAMP. Inhibition of the mitogen-activated protein kinase pathway by PD98059 (25 micromol l(-1)) selectively inhibited the stimulatory effect on meiotic maturation by FSH and meiosis-activating sterol (that is, 4,4-dimethyl-5alpha-cholest-8,14, 24-triene-3beta-ol) in the presence of 4 mmol hypoxanthine l(-1), whereas spontaneous maturation in the absence of hypoxanthine was unaffected. This finding indicates that different signal transduction mechanisms are involved in induced and spontaneous maturation. The protein kinase A inhibitor rp-cAMP induced meiotic maturation in the presence of 4 mmol hypoxanthine l(-1), an effect that was additive to the maturation-promoting effect of FSH and meiosis-activating sterol, indicating that induced maturation also uses the cAMP-protein kinase A-dependent signal transduction pathway. In conclusion, induced and spontaneous maturation of mouse oocytes appear to use different signal transduction pathways.


Sign in / Sign up

Export Citation Format

Share Document