scholarly journals Machine Learning to Calculate Heparin Dose in COVID-19 Patients with Active Cancer

2021 ◽  
Vol 11 (1) ◽  
pp. 219
Author(s):  
Egidio Imbalzano ◽  
Luana Orlando ◽  
Angela Sciacqua ◽  
Giuseppe Nato ◽  
Francesco Dentali ◽  
...  

To realize a machine learning (ML) model to estimate the dose of low molecular weight heparin to be administered, preventing thromboembolism events in COVID-19 patients with active cancer. Methods: We used a dataset comprising 131 patients with active cancer and COVID-19. We considered five ML models: logistic regression, decision tree, random forest, support vector machine and Gaussian naive Bayes. We decided to implement the logistic regression model for our study. A model with 19 variables was analyzed. Data were randomly split into training (70%) and testing (30%) sets. Model performance was assessed by confusion matrix metrics on the testing data for each model as positive predictive value, sensitivity and F1-score. Results: We showed that the five selected models outperformed classical statistical methods of predictive validity and logistic regression was the most effective, being able to classify with an accuracy of 81%. The most relevant result was finding a patient-proof where python function was able to obtain the exact dose of low weight molecular heparin to be administered and thereby to prevent the occurrence of VTE. Conclusions: The world of machine learning and artificial intelligence is constantly developing. The identification of a specific LMWH dose for preventing VTE in very high-risk populations, such as the COVID-19 and active cancer population, might improve with the use of new training ML-based algorithms. Larger studies are needed to confirm our exploratory results.

2022 ◽  
Vol 2161 (1) ◽  
pp. 012013
Author(s):  
Chiradeep Gupta ◽  
Athina Saha ◽  
N V Subba Reddy ◽  
U Dinesh Acharya

Abstract Diagnosis of cardiac disease requires being more accurate, precise, and reliable. The number of death cases due to cardiac attacks is increasing exponentially day by day. Thus, practical approaches for earlier diagnosis of cardiac or heart disease are done to achieve prompt management of the disease. Various supervised machine learning techniques like K-Nearest Neighbour, Decision Tree, Logistic Regression, Naïve Bayes, and Support Vector Machine (SVM) model are used for predicting cardiac disease using a dataset that was collected from the repository of the University of California, Irvine (UCI). The results depict that Logistic Regression was better than all other supervised classifiers in terms of the performance metrics. The model is also less risky since the number of false negatives is low as compared to other models as per the confusion matrix of all the models. In addition, ensemble techniques can be approached for the accuracy improvement of the classifier. Jupyter notebook is the best tool, for the implementation of Python Programming having many types of libraries, header files, for accurate and precise work.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 445-451
Author(s):  
Yifei Sun ◽  
Navid Rashedi ◽  
Vikrant Vaze ◽  
Parikshit Shah ◽  
Ryan Halter ◽  
...  

ABSTRACT Introduction Early prediction of the acute hypotensive episode (AHE) in critically ill patients has the potential to improve outcomes. In this study, we apply different machine learning algorithms to the MIMIC III Physionet dataset, containing more than 60,000 real-world intensive care unit records, to test commonly used machine learning technologies and compare their performances. Materials and Methods Five classification methods including K-nearest neighbor, logistic regression, support vector machine, random forest, and a deep learning method called long short-term memory are applied to predict an AHE 30 minutes in advance. An analysis comparing model performance when including versus excluding invasive features was conducted. To further study the pattern of the underlying mean arterial pressure (MAP), we apply a regression method to predict the continuous MAP values using linear regression over the next 60 minutes. Results Support vector machine yields the best performance in terms of recall (84%). Including the invasive features in the classification improves the performance significantly with both recall and precision increasing by more than 20 percentage points. We were able to predict the MAP with a root mean square error (a frequently used measure of the differences between the predicted values and the observed values) of 10 mmHg 60 minutes in the future. After converting continuous MAP predictions into AHE binary predictions, we achieve a 91% recall and 68% precision. In addition to predicting AHE, the MAP predictions provide clinically useful information regarding the timing and severity of the AHE occurrence. Conclusion We were able to predict AHE with precision and recall above 80% 30 minutes in advance with the large real-world dataset. The prediction of regression model can provide a more fine-grained, interpretable signal to practitioners. Model performance is improved by the inclusion of invasive features in predicting AHE, when compared to predicting the AHE based on only the available, restricted set of noninvasive technologies. This demonstrates the importance of exploring more noninvasive technologies for AHE prediction.


2021 ◽  
Vol 11 (12) ◽  
pp. 5727
Author(s):  
Sifat Muin ◽  
Khalid M. Mosalam

Machine learning (ML)-aided structural health monitoring (SHM) can rapidly evaluate the safety and integrity of the aging infrastructure following an earthquake. The conventional damage features used in ML-based SHM methodologies face the curse of dimensionality. This paper introduces low dimensional, namely, cumulative absolute velocity (CAV)-based features, to enable the use of ML for rapid damage assessment. A computer experiment is performed to identify the appropriate features and the ML algorithm using data from a simulated single-degree-of-freedom system. A comparative analysis of five ML models (logistic regression (LR), ordinal logistic regression (OLR), artificial neural networks with 10 and 100 neurons (ANN10 and ANN100), and support vector machines (SVM)) is performed. Two test sets were used where Set-1 originated from the same distribution as the training set and Set-2 came from a different distribution. The results showed that the combination of the CAV and the relative CAV with respect to the linear response, i.e., RCAV, performed the best among the different feature combinations. Among the ML models, OLR showed good generalization capabilities when compared to SVM and ANN models. Subsequently, OLR is successfully applied to assess the damage of two numerical multi-degree of freedom (MDOF) models and an instrumented building with CAV and RCAV as features. For the MDOF models, the damage state was identified with accuracy ranging from 84% to 97% and the damage location was identified with accuracy ranging from 93% to 97.5%. The features and the OLR models successfully captured the damage information for the instrumented structure as well. The proposed methodology is capable of ensuring rapid decision-making and improving community resiliency.


The increased usage of the Internet and social networks allowed and enabled people to express their views, which have generated an increasing attention lately. Sentiment Analysis (SA) techniques are used to determine the polarity of information, either positive or negative, toward a given topic, including opinions. In this research, we have introduced a machine learning approach based on Support Vector Machine (SVM), Naïve Bayes (NB) and Random Forest (RF) classifiers, to find and classify extreme opinions in Arabic reviews. To achieve this, a dataset of 1500 Arabic reviews was collected from Google Play Store. In addition, a two-stage Classification process was applied to classify the reviews. In the first stage, we built a binary classifier to sort out positive from negative reviews. In the second stage, however we applied a binary classification mechanism based on a set of proposed rules that distinguishes extreme positive from positive reviews, and extreme negative from negative reviews. Four major experiments were conducted with a total of 10 different sub experiments to fulfill the two-stage process using different X-validation schemas and Term Frequency-Inverse Document Frequency feature selection method. Obtained results have indicated that SVM was the best during the first stage classification with 30% testing data, and NB was the best with 20% testing data. The results of the second stage classification indicated that SVM has scored better results in identifying extreme positive reviews when dealing with the positive dataset with an overall accuracy of 68.7% and NB showed better accuracy results in identifying extreme negative reviews when dealing with the negative dataset, with an overall accuracy of 72.8%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lei Li ◽  
Desheng Wu

PurposeThe infraction of securities regulations (ISRs) of listed firms in their day-to-day operations and management has become one of common problems. This paper proposed several machine learning approaches to forecast the risk at infractions of listed corporates to solve financial problems that are not effective and precise in supervision.Design/methodology/approachThe overall proposed research framework designed for forecasting the infractions (ISRs) include data collection and cleaning, feature engineering, data split, prediction approach application and model performance evaluation. We select Logistic Regression, Naïve Bayes, Random Forest, Support Vector Machines, Artificial Neural Network and Long Short-Term Memory Networks (LSTMs) as ISRs prediction models.FindingsThe research results show that prediction performance of proposed models with the prior infractions provides a significant improvement of the ISRs than those without prior, especially for large sample set. The results also indicate when judging whether a company has infractions, we should pay attention to novel artificial intelligence methods, previous infractions of the company, and large data sets.Originality/valueThe findings could be utilized to address the problems of identifying listed corporates' ISRs at hand to a certain degree. Overall, results elucidate the value of the prior infraction of securities regulations (ISRs). This shows the importance of including more data sources when constructing distress models and not only focus on building increasingly more complex models on the same data. This is also beneficial to the regulatory authorities.


Author(s):  
Sachin Kumar ◽  
Karan Veer

Aims: The objective of this research is to predict the covid-19 cases in India based on the machine learning approaches. Background: Covid-19, a respiratory disease caused by one of the coronavirus family members, has led to a pandemic situation worldwide in 2020. This virus was detected firstly in Wuhan city of China in December 2019. This viral disease has taken less than three months to spread across the globe. Objective: In this paper, we proposed a regression model based on the Support vector machine (SVM) to forecast the number of deaths, the number of recovered cases, and total confirmed cases for the next 30 days. Method: For prediction, the data is collected from Github and the ministry of India's health and family welfare from March 14, 2020, to December 3, 2020. The model has been designed in Python 3.6 in Anaconda to forecast the forecasting value of corona trends until September 21, 2020. The proposed methodology is based on the prediction of values using SVM based regression model with polynomial, linear, rbf kernel. The dataset has been divided into train and test datasets with 40% and 60% test size and verified with real data. The model performance parameters are evaluated as a mean square error, mean absolute error, and percentage accuracy. Results and Conclusion: The results show that the polynomial model has obtained 95 % above accuracy score, linear scored above 90%, and rbf scored above 85% in predicting cumulative death, conformed cases, and recovered cases.


2021 ◽  
Author(s):  
Chen Bai ◽  
Yu-Peng Chen ◽  
Adam Wolach ◽  
Lisa Anthony ◽  
Mamoun Mardini

BACKGROUND Frequent spontaneous facial self-touches, predominantly during outbreaks, have the theoretical potential to be a mechanism of contracting and transmitting diseases. Despite the recent advent of vaccines, behavioral approaches remain an integral part of reducing the spread of COVID-19 and other respiratory illnesses. Real-time biofeedback of face touching can potentially mitigate the spread of respiratory diseases. The gap addressed in this study is the lack of an on-demand platform that utilizes motion data from smartwatches to accurately detect face touching. OBJECTIVE The aim of this study was to utilize the functionality and the spread of smartwatches to develop a smartwatch application to identifying motion signatures that are mapped accurately to face touching. METHODS Participants (n=10, 50% women, aged 20-83) performed 10 physical activities classified into: face touching (FT) and non-face touching (NFT) categories, in a standardized laboratory setting. We developed a smartwatch application on Samsung Galaxy Watch to collect raw accelerometer data from participants. Then, data features were extracted from consecutive non-overlapping windows varying from 2-16 seconds. We examined the performance of state-of-the-art machine learning methods on face touching movements recognition (FT vs NFT) and individual activity recognition (IAR): logistic regression, support vector machine, decision trees and random forest. RESULTS Machine learning models were accurate in recognizing face touching categories; logistic regression achieved the best performance across all metrics (Accuracy: 0.93 +/- 0.08, Recall: 0.89 +/- 0.16, Precision: 0.93 +/- 0.08, F1-score: 0.90 +/- 0.11, AUC: 0.95 +/- 0.07) at the window size of 5 seconds. IAR models resulted in lower performance; the random forest classifier achieved the best performance across all metrics (Accuracy: 0.70 +/- 0.14, Recall: 0.70 +/- 0.14, Precision: 0.70 +/- 0.16, F1-score: 0.67 +/- 0.15) at the window size of 9 seconds. CONCLUSIONS Wearable devices, powered with machine learning, are effective in detecting facial touches. This is highly significant during respiratory infection outbreaks, as it has a great potential to refrain people from touching their faces and potentially mitigate the possibility of transmitting COVID-19 and future respiratory diseases.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Jamie Miles ◽  
Janette Turner ◽  
Richard Jacques ◽  
Julia Williams ◽  
Suzanne Mason

Abstract Background The primary objective of this review is to assess the accuracy of machine learning methods in their application of triaging the acuity of patients presenting in the Emergency Care System (ECS). The population are patients that have contacted the ambulance service or turned up at the Emergency Department. The index test is a machine-learning algorithm that aims to stratify the acuity of incoming patients at initial triage. This is in comparison to either an existing decision support tool, clinical opinion or in the absence of these, no comparator. The outcome of this review is the calibration, discrimination and classification statistics. Methods Only derivation studies (with or without internal validation) were included. MEDLINE, CINAHL, PubMed and the grey literature were searched on the 14th December 2019. Risk of bias was assessed using the PROBAST tool and data was extracted using the CHARMS checklist. Discrimination (C-statistic) was a commonly reported model performance measure and therefore these statistics were represented as a range within each machine learning method. The majority of studies had poorly reported outcomes and thus a narrative synthesis of results was performed. Results There was a total of 92 models (from 25 studies) included in the review. There were two main triage outcomes: hospitalisation (56 models), and critical care need (25 models). For hospitalisation, neural networks and tree-based methods both had a median C-statistic of 0.81 (IQR 0.80-0.84, 0.79-0.82). Logistic regression had a median C-statistic of 0.80 (0.74-0.83). For critical care need, neural networks had a median C-statistic of 0.89 (0.86-0.91), tree based 0.85 (0.84-0.88), and logistic regression 0.83 (0.79-0.84). Conclusions Machine-learning methods appear accurate in triaging undifferentiated patients entering the Emergency Care System. There was no clear benefit of using one technique over another; however, models derived by logistic regression were more transparent in reporting model performance. Future studies should adhere to reporting guidelines and use these at the protocol design stage. Registration and funding This systematic review is registered on the International prospective register of systematic reviews (PROSPERO) and can be accessed online at the following URL: https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42020168696 This study was funded by the NIHR as part of a Clinical Doctoral Research Fellowship.


Sign in / Sign up

Export Citation Format

Share Document