scholarly journals Association of Nicotine with Osteochondrogenesis and Osteoarthritis Development: The State of the Art of Preclinical Research

2019 ◽  
Vol 8 (10) ◽  
pp. 1699
Author(s):  
Xiaoyu Cai ◽  
Liang Gao ◽  
Magali Cucchiarini ◽  
Henning Madry

The deleterious effects of nicotine on various health conditions have been well documented. Although many orthopedic diseases are adversely affected by nicotine, little is known about its preclinical effects on chondrogenesis or osteogenesis, cartilage formation, osteoarthritis (OA), and osteochondral repair. A systematic review was conducted examining the current scientific evidence on the effects of nicotine on chondrogenesis or osteogenesis in vitro, possible consequences of prenatal nicotine exposure (PNE) on cartilage and OA susceptibility in the offspring, and whether nicotine affects OA development and osteochondral repair in vivo, always focusing on their underlying mechanisms. The data reveal dose-dependent effects on articular chondrocytes and on the chondrogenesis and osteogenesis of medicinal signaling cells in vitro, with lower doses often resulting in positive effects and higher doses causing negative effects. PNE negatively affects articular cartilage development and induces OA in the offspring without or with nicotine exposure. In contrast, protective effects on OA development were only reported in monosodium iodoacetate-induced small animal models. Finally, nicotine repressed MSC-based osteochondral repair in vivo. Future studies need to investigate dose-dependent clinical effects of smoking on cartilage quality in offspring, OA susceptibility and progression, and osteochondral repair more in detail, thus identifying possible thresholds for its pathological effects.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3435-3435
Author(s):  
Kazuhiro Abeyama ◽  
Yasushi Yoshimoto ◽  
Ikuro Maruyama

Abstract Thrombomodulin (TM) is an endothelial anticoagulant cofactor that promotes thrombin-mediated formation of activated protein C (APC), the latter an enzyme with potent anti-coagulant and anti-inflammatory properties. We have found that the N-terminal, lectin-like domain (D1) of thrombomodulin has unique anti-inflammatory properties. Thrombomodulin, via D1, binds high mobility group-B1 DNA binding protein (HMGB1), a factor closely associated with necrotic cell damage following its release from the nucleus, thereby preventing leukocyte activation in vitro, and ultraviolet radiation-induced cutaneous inflammation and lipopolysaccharide-induced lethality in vivo. Our data also demonstrate anti-inflammatory properties of a peptide spanning the D1 domain of TM and suggest its therapeutic potential. These findings highlight a novel mechanism through which an endothelial cofactor, TM, suppresses inflammation; i.e., sequestration of mediators thereby preventing their interaction with cell surface receptors on effector cells in the vasculature. Results: TM binds HMGB1 and prevents expression of pro-inflammatory activity. Our co-culture studies of leukocytes and HUVEC, and results in the cutaneous irritation model suggested that early release of a mediator, such as HMGB1, might contribute importantly to cellular activation in inflammation at later time points. In this context, TM might have the ability to decrease HMGB1-mediated inflammatory events. Binding studies using surface plasmon resonance (SPR), performed to directly assess the interaction of TM and immobilized HMGB1, demonstrated dose-dependent binding in the nanomolar range (Kd ~232 nM). Furthermore, addition of rhs-TM decreased, in a dose-dependent manner, the binding of HMGB1 to RAGE through the its N-terminal domain, but not anti-coagulant domain. TM and the N-terminal-derived TM peptide have anti-inflammatory effects in settings where HMGB1 is a likely key mediator. In HMGB1-mediated skin inflammation model, systemic administration of rhs-TM, its lectin-like domain and sRAGE resulted in a significant blunting of the inflammatory response. In contrast, the effect of anti-coagulant domain, although showing a trend toward decreased ear swelling, did not achieve statistical significance (anticoagulant domain has anti-inflammatory effects in vivo that probably reflect its ability to support thrombin-mediated activation of protein C; the latter does not occur in vitro after inactivation of the protein C zymogen by heat treatment). In view of recent data suggesting a link between HMGB1 released from injured tissue and endotoxin-induced lethality in mice, we also tested whether rhs-TM and its lectin-like domain might also have protective effects in this model. We employed a dose of intraperitoneal (IP) LPS (10 mg/kg) resulting in 100% lethality by 96 hrs. Systemic (IP) treatment of animals with anti-HMGB1 IgY had a protective effect with respect to lethality at 4 days, whereas the same regimen of nonimmune IgY was without effect. Similarly, IP administration of rhs-TM and its N-teminal lectin domain, but not anti-coagulant domain had complete protective effects compared with anti-HMGB1 IgY. Conclusion: Our findings have elucidated an unexpected anti-inflammatory property of TM residing in the D1 domain, namely binding of HMGB1.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Jun Qin ◽  
Yan-song Liu ◽  
Jun Liu ◽  
Jing Li ◽  
Yang Tan ◽  
...  

This study investigated the effect ofAngelica sinensispolysaccharides (APS-3c) on rat osteoarthritis (OA) modelin vivoand rat interleukin-1-beta- (IL-1β-) stimulated chondrocytesin vitro. APS-3c was administrated into rat OA knee joints and had protective effects on rat OA cartilagein vivo. Primary rat articular chondrocytes were cotreated with APS-3c and IL-1β  in vitro. 2~50 μg/mL APS-3c had no effect on chondrocytes viability, whereas it increased the proteoglycans (PGs) synthesis inhibited by IL-1β. Microarray analysis showed that the significant changes were concentrated in the genes which were involved in PGs synthesis. RT-PCR confirmed that treatment with APS-3c increased the mRNA expression of aggrecan and glycosyltransferases (GTs) inhibited by IL-1βbut did not affect the mRNA expression of matrix-degrading enzymes. These results indicate that APS-3c can improve PGs synthesis of chondrocytes on rat OA modelin vivoand IL-1β-stimulated chondrocytesin vitro, which is due to the promotion of the expression of aggrecan and GTs involved in PGs synthesis but not the inhibition of the expression of matrix-degrading enzymes. Our findings suggest the clinical relevance of APS-3c in the prospective of future alternative medical treatment for OA.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2858 ◽  
Author(s):  
Jihang Dai ◽  
Yu Sun ◽  
Lianqi Yan ◽  
Jingcheng Wang ◽  
Xiaolei Li ◽  
...  

The fibrosis that develops following laminectomy or discectomy often causes serious complications, and the proliferation of fibroblasts is thought to be the major cause of epidural fibrosis. 10-Hydroxycamptothecin (HCPT) has been proven to be efficient in preventing epidural fibrosis, but the exact mechanism is still unclear. NOXA is a significant regulator of cell apoptosis, which has been reported to be beneficial in the treatment of fibrosis. We performed a series of experiments, both in vitro and in vivo, to explore the intrinsic mechanism of HCPT that underlies the induction of apoptosis in fibroblasts, and also to investigate whether HCPT has positive effects on epidural fibrosis following laminectomy in rats. Fibroblasts were cultured in vitro and stimulated by varying concentrations of HCPT (0, 1, 2, 4 µg/ml) for various durations (0, 24, 48, 72 h); the effect of HCPT in inducing the apoptosis of fibroblasts was investigated via Western blots and TUNEL assay. Our results showed that HCPT could induce apoptosis in fibroblasts and up-regulate the expression of NOXA. Following the knockdown of NOXA in fibroblasts, the results of Western blot analysis showed that the level of apoptotic markers, such as cleaved-PARP and Bax, was decreased. The results from the TUNEL assay also showed a decreased rate of apoptosis in NOXA-knocked down fibroblasts. For the in vivo studies, we performed a laminectomy at the L1-L2 levels in rats and applied HCPT of different concentrations (0.2, 0.1, 0.05 mg/ml and saline) locally; the macroscopic histological assessment, hydroxyproline content analysis and histological staining were performed to evaluate the effect of HCPT on reducing epidural fibrosis. The TUNEL assay in epidural tissues showed that HCPT could obviously induce apoptosis in fibroblasts in a dose-dependent manner. Also, immunohistochemical staining showed that the expression of NOXA increased as the concentrations of HCPT increased. Our findings are the first to demonstrate that upregulation of NOXA by HCPT plays a key role in inducing fibroblast apoptosis and in reducing epidural fibrosis. These findings might provide a potential therapeutic target for preventing epidural fibrosis following laminectomy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1223
Author(s):  
Susbin Raj Wagle ◽  
Bozica Kovacevic ◽  
Corina Mihaela Ionescu ◽  
Daniel Walker ◽  
Melissa Jones ◽  
...  

Probucol (PB) is a highly lipophilic drug with potential protective effects on pancreatic β-cells from inflammation and oxidation. PB has poor bioavailability and solubility, and despite many attempts, significant improvement in antidiabetic effects or absorption has yet to be discovered. Recently, the role of bile acids has been established in significant drug formulation stabilisation effects and as cell-penetrating agents. Promising results in pharmaceutical formulation studies on drug stability and release patterns when lithocholic acid (LCA) is conjugated with PB and sodium alginate (SA) have been demonstrated. Thus, this study aimed to develop and characterise PB microcapsules incorporating LCA and examine the biological effects of the microcapsules in vitro and in vivo. PB/LCA microcapsules were prepared using an encapsulation method, ionic gelation vibrational jet flow technology. LCA incorporation in PB microcapsules showed positive effects on β-cells with improved insulin release, antioxidant activity, and PB intracellular uptake. Diabetic mice gavaged LCA-PB microcapsules showed a significant reduction in diabetes signs and symptoms, better survival rate, reduced blood glucose levels, and pro-inflammatory cytokines, with an increase PB level in blood and tissues suggesting a potential therapy for treating diabetes mellitus.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Chris Gill ◽  
Cheryl Latimer ◽  
Nigel Ternan ◽  
Kirsty Pourshahidi ◽  
Massimilano Fontana ◽  
...  

AbstractBerries are one of the most commonly consumed sources of bioactive polyphenols and these compounds may exert protective effects against initiation of colorectal cancer (CRC) by reducing DNA damage. The inverse correlation between fruit and vegetable consumption and the incidence of CRC is well established, hence the role of berry derived bioactive phytochemicals in promotion of gut health is of interest. Ileostomy studies provide a unique insight into food digestion, allowing identification of physiologically relevant dietary phytochemicals and their metabolites. Here, we hypothesised that physiologically relevant levels of Italian wild strawberry metabolites exiting the ileum would be both bioavailable and would in turn exert positive effects on gut health markers.Five ileostomists completed a wild strawberry feeding study (11/NI/0112), ileal fluid was collected pre (0 h) and post (8 h) consumption of strawberries (225 g) and assessed for phytochemical composition by LCMSn. We simulated the interaction of the ileal fluids with colonic microbiota over a 24 h period (0, 5,10, 24 hr) using in vitro gut fermenter models. Nutri-kinetic analysis using LCMSn demonstrated significant increases in the concentration of gut microbiota-mediated polyphenolic metabolites over time, including 3-(4hydroxyphenyl) propionic acid, 3-(3-hydroxyphenyl) propanoic acid, hydroxybenzoic acid and urolithin A. While changes in the bacterial composition of the gut fermenter model(s) were monitored using fluorescent in situ hybridisation analysis (FISH) with validated probes for Total bacteria, Bifidobacterium genus, Clostridium histolyticum/perfringens group, Faecalibacterium prausnitzii, Eubacterium rectale group, Bacteroides, Lactobacilli and Enterobacteria; limited changes were observed.Bioactivity of the post-berry consumption ileal fermentates was assessed on two colonocyte cell lines (HT29 and CCD841 CON (normal)) using the oxidative challenge COMET assay. Post-berry ileal fermentate (24 h) from all five ileostomists significantly (p < 0.01) decreased DNA damage (expressed as %Tail DNA) in both HT29 cells (~45%) and CCD841 cells (~25%) compared to untreated controls.To conclude, strawberry phytochemicals were available for colonic fermentation following ileal digestion and human microbiota-mediated fermentation which subsequently increased overall levels of polyphenolic metabolites, the post berry fermentates were demonstrated to reduce DNA damage in colonocytes.


1998 ◽  
Vol 66 (4) ◽  
pp. 1421-1426 ◽  
Author(s):  
Wang J. Lee ◽  
Jeffrey L. Farmer ◽  
Milo Hilty ◽  
Yoon B. Kim

ABSTRACT The unique germfree, colostrum-deprived, immunologically “virgin” piglet model was used to evaluate the ability of lactoferrin (LF) to protect against lethal shock induced by intravenously administered endotoxin. Piglets were fed LF or bovine serum albumin (BSA) prior to challenge with intravenousEscherichia coli lipopolysaccharide (LPS), and temperature, clinical symptoms, and mortality were tracked for 48 h following LPS administration. Prefeeding with LF resulted in a significant decrease in piglet mortality compared to feeding with BSA (16.7 versus 73.7% mortality, P < 0.001). Protection against the LPS challenge by LF was also correlated with both resistance to induction of hypothermia by endotoxin and an overall increase in wellness, as quantified by a toxicity score developed for these studies. In vitro studies using a flow cytometric assay system demonstrated that LPS binding to porcine monocytes was inhibited by LF in a dose-dependent fashion, suggesting that the mechanism of LF action in vivo may be inhibition of LPS binding to monocytes/macrophages and, in turn, prevention of induction of monocyte/macrophage-derived inflammatory-toxic cytokines.


1995 ◽  
Vol 73 (05) ◽  
pp. 805-811 ◽  
Author(s):  
Yasuo Takahashi ◽  
Yoshitaka Hosaka ◽  
Hiromi Niina ◽  
Katsuaki Nagasawa ◽  
Masaaki Naotsuka ◽  
...  

SummaryWe examined the anticoagulant activity of two major molecules of soluble thrombomodulin purified from human urine. The apparent molecular weights of these urinary thrombomodulins (UTMs) were 72,000 and 79,000, respectively. Both UTMs showed more potent cofactor activity for protein C activation [specific activity >5,000 thrombomodulin units (TMU)/mg] than human placental thrombomodulin (2,180 TMU/mg) and rabbit lung thrombomodulin (1,980 TMU/mg). The UTMs prolonged thrombin-induced fibrinogen clotting time (>1 TMU/ml), APTT (>5 TMU/ml), TT (>5 TMU/ml) and PT (>40 TMU/ml) in a dose-dependent fashion. These effects appeared in the concentration range of soluble thrombomodulins present in human plasma and urine. In the rat DIC model induced by thromboplastin, administration of UTMs by infusion (300-3,000 TMU/kg) restored the hematological abnormalities derived from DIC in a dose-dependent fashion. These results demonstrate that UTMs exhibit potent anticoagulant and antithrombotic activities, and could play a physiologically important role in microcirculation.


2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


Sign in / Sign up

Export Citation Format

Share Document