scholarly journals Dynamic Gelation of Conductive Polymer Nanocomposites Consisting of Poly(3-hexylthiophene) and ZnO Nanowires

2021 ◽  
Vol 5 (8) ◽  
pp. 199
Author(s):  
Franceska A. Santos ◽  
Dana J. Christensen II ◽  
Ryan Y. Cox ◽  
Spencer A. Schultz ◽  
Raymond H. Fernando ◽  
...  

The sol–gel transition of conductive nanocomposites consisting of poly(3-hexylthiophene) (P3HT) and ZnO nanowires in o-dichlorobenzene (o-DCB) has been investigated rheologically. The physical gelation of P3HT in o-DCB spontaneously occurs upon adding the small amount of ZnO nanowires. The rheological properties of the P3HT/ZnO nanocomposite gels have been systematically studied by varying factors such as polymer concentration, nanowire loading, and temperature. The nanocomposite gel exhibits shear-thinning in the low shear rate range and shear-thickening in the high shear rate range. The elastic storage modulus of the nanocomposite gel gradually increases with gelation time and is consistently independent of frequency at all investigated ranges. The isothermal gelation kinetics has been analyzed by monitoring the storage modulus with gelation time, and the data are well fitted with a first-order rate law. The structural analysis data reveal that the polymer forms the crystalline layer coated on ZnO nanowires. A fringed micelle model is proposed to explain the possible gelation mechanism.

2012 ◽  
Vol 1403 ◽  
Author(s):  
Seyedsina Moeinzadeh ◽  
Danial Barati ◽  
Xuezhong He ◽  
Esmaiel Jabbari

ABSTRACTIn this work, a novel star 4-arm poly(ethylene glycol-co-lactide) acrylate macromonomer (SPELA) is synthesized, and the effect of macromonomer concentration and architecture on modulus, swelling ratio and sol fraction is investigated. The results show that the storage modulus of the hydrogel had an increasing trend with polymer concentration. Changing the polymer architecture from linear to 4-arm increased the storage modulus by 2.2-fold. The water content depended on the hydrophilic segment density as well as the extent of crosslinking and showed a decreasing trend with macromonomer concentration. The sol fractions of the SPELA hydrogels changed from 13% to 5% when concentration increased from 10% to 25%. The star SPELA hydrogel with high modulus, fast gelation time, and low sol fraction is potential useful as a degradable carrier in cell-based therapies. Results show that the SPELA hydrogel supports viability and osteogenic differentiation of the encapsulated bone marrow stromal cells.


1983 ◽  
Vol 23 (05) ◽  
pp. 804-808 ◽  
Author(s):  
Robert K. Prud'homme ◽  
Jonathan T. Uhl ◽  
John P. Poinsatte

Abstract The formation of polyacrylamide/chromium-ion gels has been followed rheologically. The time dependence of the storage modulus has been used to analyze the kinetics of the gelation process. The kinetic theory of rubber elasticity has been used to determine the crosslink density in the gel from the measured value of the storage modulus. The effects of changing polymer, chromium ion, and reducing agent concentrations have been studied. polymer, chromium ion, and reducing agent concentrations have been studied. Introduction Water-soluble polymers of high molecular weight, such as polyacrylamides, polysaccharides, and hydroxyl ethyl celluloses, have been studied as polysaccharides, and hydroxyl ethyl celluloses, have been studied as water flooding additives since the late 1950's. These polymers are added to control fluid movement in reservoirs to improve sweep efficiencies. In addition to enhanced fluid mobility control in porous media by increased viscosities of polymer solutions, the injection of dilute (250 ppm) polyacrylamide solutions causes permeability reductions that persist after polyacrylamide solutions causes permeability reductions that persist after the mobile polymer is flushed from the pore space by water. This reduction in permeability to water is a result of the retention of polyacrylamide in the porous rock by adsorption and mechanical entrapment. Rock permeability also can be reduced deliberately by crosslinking a polyacrylamide solution in situ to form a three-dimensional (3D) gel. The polyacrylamide solution in situ to form a three-dimensional (3D) gel. The gelled polymer is capable of shutting off fractures and zones of high permeability. The rate at which this 3D gel is formed determines how far permeability. The rate at which this 3D gel is formed determines how far the solution can be pushed into the rock formation away from the injection well before gelation occurs. Polyacrylamides are known to form gels in the presence of Cr+3 ions. The process involves the reduction of Cr+6 to Cr+3 with a reducing agent such as sodium bisulfite or thiourea. When Cr+6 is reduced to Cr+3, the trivalent chromium ion and polymer react slowly to form a 3D gel structure. The mechanism by which polyacrylamide or partially hydrolyzed polyacrylamide forms gels in the presence of metal ions is not well polyacrylamide forms gels in the presence of metal ions is not well understood. One idea is that Cr+3 serves as a crosslinking agent between the polyacrylamide molecules. Another suggestion is that Cr+3 forms a stable dispersion in the polymer solution, resulting in either a highly viscous liquid or a gel. Only a limited amount of data has been published on the kinetics of the polyacrylamide/chromium ion gelation process. Terry et al. followed the increase of the steady shear viscosity with time after the introduction of a reducing agent to a polyacrylamide/Cr+6 solution. Gelation time was defined as the time required for the shear viscosity to reach an arbitrary value. The effects of varying polymer type and concentration, Cr+6 concentration, and reducing agent type and concentration were investigated. A linear relationship was found between the reciprocal of the gelation time and the reciprocal of the polymer concentration for a given polymer reducing agent system. The gelation time decreases both with increasing polymer concentration and with increasing Cr+6 and reducing agent polymer concentration and with increasing Cr+6 and reducing agent concentrations. An Arrhenius-type relationship was shown between gelation time and temperature by Willhite and Jordan. During the buildup of a 3D gel network, the shear viscosity increases, but the shearing motion imposed on the sample also tends to break down the network being formed. SPEJ p. 804


SPE Journal ◽  
2019 ◽  
Vol 24 (04) ◽  
pp. 1726-1740 ◽  
Author(s):  
Daoyi Zhu ◽  
Jirui Hou ◽  
Yuguang Chen ◽  
Qi Wei ◽  
Shuda Zhao ◽  
...  

Summary A terpolymer-gel system using low toxic polyethylenimine (PEI) as the crosslinker was developed for conformance improvement in high-temperature reservoirs. Suitable gelation time (GT), gel strength, and thermal stability could be obtained by selecting PEI molecular weight and adjusting terpolymer concentrations. With the increase of terpolymer concentration, GT decreases and the gel strength increases. However, in this research, the effect of PEI concentration on the gelation performance was much less obvious than that of the polymer concentration. Very low concentrations of sodium chloride (NaCl) can slightly shorten the GT. After critical concentrations were reached, the authors determined that the ions will delay the crosslinking reaction. Moreover, the addition of sodium carbonate (Na2CO3) can also lengthen GT. The gel systems were able to maintain thermal stability at 150°C. Uniformly distributed 3D network microstructures and the small size of the gel-grid pores made the network structure maintain thermal stability. The use of the terpolymer-gel-system gelation mechanism crosslinked by PEI can help petroleum engineers better understand and apply this terpolymer-gel system.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1395
Author(s):  
Angel Serrano ◽  
Ana M. Borreguero ◽  
Isabel Iglesias ◽  
Anselmo Acosta ◽  
Juan F. Rodríguez ◽  
...  

A novel form-stable phase-change material (PCM) based on facing bricks was developed by incorporating thermoregulating PEG-SiO2, synthetized by sol-gel method and based on polyethylene glycol as phase-change material and silica as stabilizer compound. The PEG-SiO2 in its liquid form (sol) is firstly adsorbed inside the porous brick and lastly stabilized (gel) by controlling its gelation time, obtaining form-stable PCMs with PEG-SiO2 contents within 15–110 wt.%. Kinetic adsorption curves of the sol into bricks having different porosities as well as maximum adsorption capacities were obtained. The effective diffusion coefficients (Deff) were estimated by means of Fick’s second law, it being possible to predict the adsorption of sol PEG-SiO2 by the brick as function of its porosity and the free diffusion coefficient. Finally, form-stable PCMs demonstrated an improvement in their thermal energy storage capacity (up to 338%), these materials being capable of buffering the indoor temperature during an entire operational day


2001 ◽  
Vol 27 (2) ◽  
pp. 228-235
Author(s):  
Shinichi Ookawara ◽  
Akihisa Yano ◽  
Kohei Ogawa ◽  
Koichi Taniguchi

2010 ◽  
Vol 157 (3) ◽  
pp. H241 ◽  
Author(s):  
K. J. Chen ◽  
F. Y. Hung ◽  
S. J. Chang ◽  
Z. S. Hu

2019 ◽  
Author(s):  
RAN DU ◽  
YUE HU ◽  
René Hübner ◽  
Jan-Ole Joswig ◽  
Xuelin Fan ◽  
...  

<div>Noble metal foams (NMFs) are a new class of functional porous materials featuring properties of both noble metals and monolithic porous materials, providing impressive prospects in catalysis, bio-sensing, plasmonic technologies, etc...Among reported synthetic methods to date, the sol-gel approach manifests overwhelming advantages for versatile synthesis of controlled nanostructured NMFs under mild condition. However, limited gelation methods and insufficient understanding of the underlying mechanism retards structure/composition manipulation of NMFs, hampering ondemand designing for practical applications. Herein highly tunable NMFs are fabricated at room temperature by activating specific-ion effects and regulating ion-nanoparticle interactions, affording various single/alloy NMFs with adjustable compositions (Au, Ag, Pd, Pt), ligament sizes (3.1~142.0 nm), and special morphologies. Their superior performance in programmable self-propulsion devices and electrocatalytic alcohol oxidation are demonstrated. This study provides not only a conceptually new route to fabricate and manipulate functional NMFs, but also an overall picture in understanding the gelation mechanism. It may pave the way for on-target designing versatile NMFs for various applications.</div>


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Nuchnapa Tangboriboon ◽  
Anuvat Sirivat ◽  
Ruksapong Kunanuruksapong ◽  
Sujitra Wongkasemjit

AbstractLead zirconate was synthesized via the sol-gel process and calcined at 300°C for 1 h to obtain a Perovskite structure of an orthorhombic form. SEM micrographs indicate that the lead zirconate particles are moderately dispersed in a solid acrylic rubber, AR71. Without an electric field, the particles merely act as a dielectric filler that can absorb and store additional stress. Under electrical field, particle-induced dipole moments are generated, leading to the interparticle interactions, thus creating a substantial increase in the storage modulus. At the small volume fraction of lead zirconate particles of 0.02 embedded in the elastomer matrix, the electrical conductivity increases dramatically by two orders of magnitude. At the volume fraction of merely 0.0002, the storage modulus, or the composite rigidity, increases by a factor of two as the electric field strength is varied from 0 to 2 kV/mm.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Patchara Punyamoonwongsa ◽  
Supattra Klayya ◽  
Warayuth Sajomsang ◽  
Chanikarn Kunyanee ◽  
Sasitorn Aueviriyavit

Silk sericin (SS) from the Bombyx mori silk cocoons has received much attention from biomedical scientists due to its outstanding properties, such as antioxidant, antibacterial, UV-resistant, and ability to release moisturizing factors. Unmodified SS does not self-assemble strongly enough to be used as a hydrogel wound dressing. Therefore, there is a need for suitable stabilization techniques to interlink the SS peptide chains or strengthen their structural cohesion. Here, we reported a method to form a silk semi-interpenetrating network (semi-IPN) structure through reacting with the short-chain poly(ethylene glycol) diacrylate (PEGDA) in the presence of a redox pair. Various hydrogels were prepared in aqueous media at the final SS/PEGDA weight percentages of 8/92, 15/85, and 20/80. Results indicated that all semi-IPN samples underwent a sol-gel transition within 70 min. The equilibrium water content (EWC) for all samples was found to be in the range of 70-80%, depending on the PEGDA content. Both the gelation time and the sol fraction decreased with the increased PEGDA content. This was due to the tightened network structure formed within the hydrogel matrices. Among all hydrogel samples, the 15/85 (SS/PEGDA) hydrogel displayed the maximum compressive strength (0.66 MPa) and strain (7.15%), higher than those of pure PEGDA. This implied a well-balanced molecular interaction within the SS/PEGDA/water systems. Based on the direct and indirect MTS assay, the 15/85 hydrogel showed excellent in vitro biocompatibility towards human dermal fibroblasts, representing a promising material for biomedical wound dressing in the future. A formation of a semi-IPN structure has thus proved to be one of the best strategies to extend a practical limit of using SS hydrogels for wound healing treatment or other biomedical hydrogel matrices in the future.


Sign in / Sign up

Export Citation Format

Share Document