scholarly journals Effects of Dehydration on Archery Performance, Subjective Feelings and Heart Rate during a Competition Simulation

2020 ◽  
Vol 5 (3) ◽  
pp. 67
Author(s):  
Alexandros Savvides ◽  
Christoforos D. Giannaki ◽  
Angelos Vlahoyiannis ◽  
Pinelopi S. Stavrinou ◽  
George Aphamis

This study aimed to investigate the effect of dehydration on archery performance, subjective feelings and heart rate response. Ten national level archers performed two archery competition simulations, once under euhydration (EUH) and once in a dehydrated state (DEH), induced by 24-h reduced fluid intake. Hydration status was verified prior to each trial by urine specific gravity (USG ≥ 1.025). Archery score was measured according to official archery regulations. Subjective feelings of thirst, fatigue and concentration were recorded on a visual analogue scale. Heart rate was continuously monitored during the trials. Archery performance was similar between trials (p = 0.155). During DEH trial (USG 1.032 ± 0.005), the athletes felt thirstier (p < 0.001), more fatigued (p = 0.041) and less able to concentrate (p = 0.016) compared with the EUH trial (USG 1.015 ± 0.004). Heart rate during DEH at baseline (85 ± 5 b∙min−1) was higher (p = 0.021) compared with EUH (78 ± 6 b∙min−1) and remained significantly higher during the latter stages of the DEH compared to EUH trial. In conclusion, archery performance over 72 arrows was not affected by dehydration, despite the induced psychological and physiological strain, revealed from decreased feeling of concentration, increased sensation of fatigue and increased heart rate during the DEH trial.

2009 ◽  
Vol 44 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Kristin L. Osterberg ◽  
Craig A. Horswill ◽  
Lindsay B. Baker

Abstract Context: Urine specific gravity (USG) has been used to estimate hydration status in athletes on the field, with increasing levels of hypohydration indicated by higher USG measurements (eg, greater than 1.020). Whether initial hydration status based on a urine measure is related to subsequent drinking response during exercise or athletic competition is unclear. Objective: To determine the relationship between pregame USG and the volume of fluid consumed by players in a professional basketball game. Design: Cross-sectional study. Setting: Basketball players were monitored during Summer League competition. Patients or Other Participants: Players (n  =  29) from 5 teams of the National Basketball Association agreed to participate. Main Outcome Measure(s): Pregame USG was measured for each player on 2 occasions. Athletes were given ad libitum access to fluid during each game and were unaware of the purpose of the study. Volume of fluid intake was measured for each player. To assess sweat loss, athletes were weighed in shorts before and after each game. Results: Sweat loss ranged from 1.0 to 4.6 L, with a mean sweat loss of 2.2 ± 0.8 L. Fluid intake ranged from 0.1 to 2.9 L, with a mean fluid intake of 1.0 ± 0.6 L. Pregame USG was greater than 1.020 in 52% of the urine samples collected and was not correlated with fluid volume consumed during either of the games (r  =  0.15, P  =  .48, and r  =  0.15, P  =  .52, respectively). Conclusions: Approximately half of the players began the games in a hypohydrated state, as indicated by USG. Fluid intake during the game did not compensate for poor hydration status before competition. Furthermore, sweat losses in these players during games were substantial (greater than 2 L in approximately 20 minutes of playing time). Therefore, both pregame and during-game hydration strategies, such as beverage availability and player education, should be emphasized.


2006 ◽  
Vol 16 (6) ◽  
pp. 611-619 ◽  
Author(s):  
Robert McMurray ◽  
David K. Williams ◽  
Claudio L. Battaglini

Seven highly trained male triathletes, aged 18 to 35 years, were tested during two simulated Olympic distance triathlons to determine whether run performance was enhanced when consuming 177 ml of water at 8, 16, 24, and 32 kilometers (Early Trials) compared to consumption at 10, 20, 30, and 40 kilometers (Late Trials), during the cycling segment of the triathlon. Swim times for 1500 m were similar between trials; 40-km cycling times were ~10 s faster during the Late trials; however, 10-km run times were faster during the Early Trials (P < 0.02). No significant differences between run trials were found for the rating of perceived exertion, oxygen uptake, heart rate, and change in urine specific gravity. It was concluded that the consumption of fluids earlier in the cycle phase of the Olympic distance triathlon benefits the run and overall performance time.


2021 ◽  
Vol 79 (1) ◽  
pp. 55-63
Author(s):  
Dirk Aerenhouts ◽  
Laurent Chapelle ◽  
Peter Clarys ◽  
Evert Zinzen

Abstract Maintaining euhydration is important for optimal health, performance and recovery, but can be challenging for alpine skiers when training in a relatively cold but dry environment. This study aimed to evaluate hydration status, fluid loss and fluid intake in adolescent alpine skiers during a training camp. Twelve athletes aged 14.3 ± 0.9 years volunteered to participate in the study. Athletes resided at an altitude of 1600 m and trained between 1614 and 2164 m. During eight consecutive days, urine specific gravity was measured before each morning training session using a refractometer. Changes in body weight representing fluid loss and ad libitum fluid intake during each morning training session were assessed using a precision scale. Mean pre-training urine specific gravity remained stable throughout the training camp. Individual values ranged between 1.010 and 1.028 g/cm3with 50 to 83% of athletes in a hypohydrated state (urine specific gravity ≥ 1.020 g/cm3). Mean training induced fluid loss remained stable throughout the training camp (range -420 to -587 g) with individual losses up to 1197 g (-3.5%). Fluid intake was significantly lower than fluid loss during each training session. To conclude, urine specific gravity values before training indicated insufficient daily fluid intake in more than half of the athletes. Furthermore, fluid intake during training in adolescent alpine skiers was suboptimal even when drinks were provided ad libitum. Coaches and athletes should be encouraged to carefully monitor hydration status and to ensure that alpine skiers drink sufficiently during and in between training sessions.


Author(s):  
Eric Kyle O’Neal ◽  
Samantha Louise Johnson ◽  
Brett Alan Davis ◽  
Veronika Pribyslavska ◽  
Mary Caitlin Stevenson-Wilcoxson

The legitimacy of urine specific gravity (USG) as a stand-alone measure to detect hydration status has recently been challenged. As an alternative to hydration status, the purpose of this study was to determine the diagnostic capability of using the traditional USG marker of >1.020 to detect insufficient recovery fluid consumption with consideration for moderate versus high sweat losses (2.00–2.99 or >3% body mass, respectively). Adequate recovery fluid intake was operationally defined as ≥100% beverage fluid intake plus food water from one or two meals and a snack. Runners (n = 59) provided 132 samples from five previous investigations in which USG was assessed 10–14 hr after 60–90 min runs in temperate-to-hot environments. Samples were collected after a meal (n = 58) and after waking (n = 74). When sweat losses exceeded 3% body mass (n = 60), the relationship between fluid replacement percentage and USG increased from r = −.55 to −.70. Correct diagnostic decision improved from 66.6 to 83.3%, and receiver operating characteristic area under the curve increased the diagnostic accuracy score from 0.76 to approaching excellent (0.86). Artifacts of significant prerun hyperhydration (eight of 15 samples has USG <1.005) may explain false positive diagnoses, while almost all (84%) cases of false positives were found when sweat losses were <3.0% of body mass. Evidence from this study suggests that euhydrated runners experiencing significant sweat losses who fail to reach adequate recovery fluid intake levels can be identified by USG irrespective of acute meal and fluid intake ∼12-hr postrun.


2017 ◽  
Vol 6 (4) ◽  
pp. 326
Author(s):  
Liani Setyarsih ◽  
Martha Ardiaria ◽  
Deny Yudi Fitranti

Background: Hydration status is a condition that describes total body fluid. One of the method of measuring hydration status is urine specific gravity. Energy density of food is the amount energy content of total weight food. Foods with high energy density tend to have a lower water content, which will affect fluid intake. The aim of this research was to know the correlation of energy density and fluid intake with urine specific gravity as one of the markers of hydration status. Method: This was an observational research with cross-sectional study design. The research was conducted in Senior High School 15 Semarang involving 55 subjects by Simple Random Sampling method. Food intake and fluid intake were assessed by 1x24 hours Food Recall. Urine specific gravity measured in laboratory. Body fat percentage measured by BIA (Bioelectrical Impendance Analysis) and physical activity assessed by 1x24 hours record physical activity. Data were analyzed by rank spearman.Result: Median of urine specific gravity men and women was 1,02 g/ml. Mean of energy density in men was 1,8±0,32 kcal/gram, in women was 2,1±0,59 kkal/gram. Mean of fluid intake in men was 2406,4±491,38 ml, in women was 2159,5±648,42ml. There was significant correlation of fluid intake with hydration status (p=0,027). There was no significant correlation of energy density and hydration status (p=0,218). Multivariate analysis showed that 14,6% of hydration status is affected by both fluid intake and energy intake. Conclusion: There was significant correlation of fluid intake with urine specific gravity. There was no significant correlation of energy density and urine specific gravity.


Author(s):  
Lawrence E. Armstrong ◽  
Amy C. Pumerantz ◽  
Kelly A. Fiala ◽  
Melissa W. Roti ◽  
Stavros A. Kavouras ◽  
...  

It is difficult to describe hydration status and hydration extremes because fluid intakes and excretion patterns of free-living individuals are poorly documented and regulation of human water balance is complex and dynamic. This investigation provided reference values for euhydration (i.e., body mass, daily fluid intake, serum osmolality; M ± SD); it also compared urinary indices in initial morning samples and 24-hr collections. Five observations of 59 healthy, active men (age 22 ± 3 yr, body mass 75.1 ± 7.9 kg) occurred during a 12-d period. Participants maintained detailed records of daily food and fluid intake and exercise. Results indicated that the mean total fluid intake in beverages, pure water, and solid foods was >2.1 L/24 hr (range 1.382–3.261, 95% confidence interval 0.970–3.778 L/24 hr); mean urine volume was >1.3 L/24 hr (0.875–2.250 and 0.675–3.000 L/24 hr); mean urine specific gravity was >1.018 (1.011–1.027 and 1.009–1.030); and mean urine color was ≥4 (4–6 and 2–7). However, these men rarely (0–2% of measurements) achieved a urine specific gravity below 1.010 or color of 1. The first morning urine sample was more concentrated than the 24-h urine collection, likely because fluids were not consumed overnight. Furthermore, urine specific gravity and osmolality were strongly correlated (r2 = .81–.91, p < .001) in both morning and 24-hr collections. These findings provide euhydration reference values and hydration extremes for 7 commonly used indices in free-living, healthy, active men who were not exercising in a hot environment or training strenuously.


2013 ◽  
Vol 38 (6) ◽  
pp. 621-625 ◽  
Author(s):  
Vahur Ööpik ◽  
Saima Timpmann ◽  
Andres Burk ◽  
Innar Hannus

We assessed the urinary indexes of hydration status of Greco-Roman wrestlers in an authentic precompetition situation at the time of official weigh-in (OWI). A total of 51 of 89 wrestlers competing in the Estonian Championship in 2009 donated a urine sample. Questionnaire responses revealed that 27 wrestlers (body mass losers (BMLs)) reduced body mass before the competition, whereas 24 wrestlers (those who do not lose body mass (n-BMLs)) did not. In 42 wrestlers, values of urine specific gravity ≥1.020 and urine osmolality ≥700 mOsmol·kg−1 revealed a hypohydrated status. The prevalence of hypohydration in the BMLs (96%) was higher than in the n-BMLs (67%) (χ2 = 7.68; p < 0.05). The prevalence of serious hypohydration (urine specific gravity >1.030) was 5.3 times greater (χ2 = 8.32; p < 0.05) in the BMLs than in the n-BMLs. In the BMLs, the extent of body mass gain during the 16-h recovery (2.5 ± 1.2 kg) was associated (r = 0.764; p < 0.05) with self-reported precompetition body mass loss (4.3 ± 2.0 kg) and exceeded the body mass gain observed in the n-BMLs (0.7 ± 1.2 kg; p < 0.05). We conclude that hypohydration is prevalent among Greco-Roman wrestlers at the time of OWI. The prevalence of hypohydration and serious hypohydration is especially high among wrestlers who are accustomed to reducing body mass before competition. These results suggest that an effective rehydration strategy is needed for Olympic-style wrestlers, and that changes in wrestling rules should be considered to reduce the prevalence of harmful body mass management behaviours.


Nutrients ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 565 ◽  
Author(s):  
Ana Isabel Laja García ◽  
Maria de Lourdes Samaniego-Vaesken ◽  
Teresa Partearroyo ◽  
Gregorio Varela-Moreiras

The achievement of adequate hydration status is essential for mental and physical performance and for health in general, especially in children and adolescents. Nevertheless, little is known about hydration status of this population, mainly due to the limited availability of research tools; thus, the objective of the current study was to adapt and validate our hydration status questionnaire in a Spanish adolescent-young population. The questionnaire was validated against important hydration markers: urine colour, urine specific gravity, haemoglobin, haematocrit and total body water and involved 128 subjects aged between 12–17 years. Water intake was also estimated through a three-day dietary record and physical activity was assessed through accelerometers. Participants completed the questionnaire twice. Water balance and water intake were correlated with urine specific gravity and with total body water content. Water intake obtained by the questionnaire was correlated with results from the three-day dietary record. The intraclass correlation coefficient indicated moderate concordance between both recordings and the Cronbach’s alpha revealed high consistency. The Bland and Altman method indicated that the limits of agreement were acceptable to reveal the reliability of the estimated measures. In conclusion, this is the first time that a questionnaire is valid and reliable to estimate hydration status of adolescent-young populations.


2008 ◽  
Vol 33 (2) ◽  
pp. 263-271 ◽  
Author(s):  
Matthew S. Palmer ◽  
Lawrence L. Spriet

Previous research in many sports suggests that losing ~1%–2% body mass through sweating impairs athletic performance. Elite-level hockey involves high-intensity bursts of skating, arena temperatures are >10 °C, and players wear protective equipment, all of which promote sweating. This study examined the pre-practice hydration, on-ice fluid intake, and sweat and sodium losses of 44 candidates for Canada’s junior men’s hockey team (mean ± SE age, 18.4 ± 0.1 y; height, 184.8 ± 0.9 cm; mass, 89.9 ± 1.1 kg). Players were studied in groups of 10–12 during 4 intense 1 h practices (13.9 °C, 66% relative humidity) on 1 day. Hydration status was estimated by measuring urine specific gravity (USG). Sweat rate was calculated from body mass changes and fluid intake. Sweat sodium concentration ([Na]) was analyzed in forehead sweat patch samples and used with sweat rate to estimate sodium loss. Over 50% of players began practice mildly hypohydrated (USG > 1.020). Sweat rate during practice was 1.8 ± 0.1 L·h–1 and players replaced 58% (1.0 ± 0.1 L·h–1) of the sweat lost. Body mass loss averaged 0.8% ± 0.1%, but 1/3 of players lost more than 1%. Sweat [Na] was 54.2 ± 2.4 mmol·L–1 and sodium loss averaged 2.26 ± 0.17 g during practice. Players drank only water during practice and replaced no sodium. In summary, elite junior hockey players incurred large sweat and sodium losses during an intense practice, but 2/3 of players drank enough to minimize body mass loss. However, 1/3 of players lost more than 1% body mass despite ready access to fluid and numerous drinking opportunities from the coaches.


1991 ◽  
Vol 146 (6) ◽  
pp. 1475-1477 ◽  
Author(s):  
Michael McCormack ◽  
Jean Dessureault ◽  
Michel Guitard

Sign in / Sign up

Export Citation Format

Share Document