scholarly journals Difference in Movement between Superficial and Deep Parts of the Infrapatellar Fat Pad during Knee Extension

2021 ◽  
Vol 6 (3) ◽  
pp. 68
Author(s):  
Syoya Nakanishi ◽  
Ryosuke Morimoto ◽  
Masashi Kitano ◽  
Kengo Kawanishi ◽  
Arisa Tanaka ◽  
...  

(1): The superficial and deep parts of the infrapatellar fat pat (IFP) have different morphological and functional characteristics. Knee pain often occurs during movement, and it is important to clarify the movement of the IFP during knee joint movement. The purpose of this study is to clarify that the movement of the superficial and deep parts of the IFP are different during knee extension in vivo using ultrasonography (US). (2): US was performed on 15 knees of 15 healthy adults. The probe was placed longitudinally at the center of the patellar tendon and the IFP was imaged. Measurements were taken during active extension of the knee from 90 degrees to 10 degrees of knee flexion at a rate of 30 times/min. The captured US videos were analyzed using Flow particle image velocimetry (Flow PIV) fluid measurement software. The region-of-interest (ROI) was set at the superficial part and the deep part of the IFP, and the flow velocity was calculated for each. (3): The flow velocity of the deep part (1.37 ± 0.13 cm/s) of the IFP was significantly faster than that of the superficial part (0.80 ± 0.23 cm/s). (4): Our results show that the flow velocity of the IFP is different between the superficial and deep parts and that US may be a better assessment tool for the movement of the IFP.

Author(s):  
R.J. Mount ◽  
R.V. Harrison

The sensory end organ of the ear, the organ of Corti, rests on a thin basilar membrane which lies between the bone of the central modiolus and the bony wall of the cochlea. In vivo, the organ of Corti is protected by the bony wall which totally surrounds it. In order to examine the sensory epithelium by scanning electron microscopy it is necessary to dissect away the protective bone and expose the region of interest (Fig. 1). This leaves the fragile organ of Corti susceptible to physical damage during subsequent handling. In our laboratory cochlear specimens, after dissection, are routinely prepared by the O-T- O-T-O technique, critical point dried and then lightly sputter coated with gold. This processing involves considerable specimen handling including several hours on a rotator during which the organ of Corti is at risk of being physically damaged. The following procedure uses low cost, readily available materials to hold the specimen during processing ,preventing physical damage while allowing an unhindered exchange of fluids.Following fixation, the cochlea is dehydrated to 70% ethanol then dissected under ethanol to prevent air drying. The holder is prepared by punching a hole in the flexible snap cap of a Wheaton vial with a paper hole punch. A small amount of two component epoxy putty is well mixed then pushed through the hole in the cap. The putty on the inner cap is formed into a “cup” to hold the specimen (Fig. 2), the putty on the outside is smoothed into a “button” to give good attachment even when the cap is flexed during handling (Fig. 3). The cap is submerged in the 70% ethanol, the bone at the base of the cochlea is seated into the cup and the sides of the cup squeezed with forceps to grip it (Fig.4). Several types of epoxy putty have been tried, most are either soluble in ethanol to some degree or do not set in ethanol. The only putty we find successful is “DUROtm MASTERMENDtm Epoxy Extra Strength Ribbon” (Loctite Corp., Cleveland, Ohio), this is a blue and yellow ribbon which is kneaded to form a green putty, it is available at many hardware stores.


2017 ◽  
Vol 3 (2) ◽  
pp. 711-715
Author(s):  
Michael de Wild ◽  
Simon Zimmermann ◽  
Marcel Obrecht ◽  
Michel Dard

AbstractThin mechanically stable Ti-cages have been developed for the in-vivo application as X-ray and histology markers for the optimized evaluation of pre-clinical performance of bone graft materials. A metallic frame defines the region of interest during histological investigations and supports the identification of the defect site. This standardization of the procedure enhances the quality of pre-clinical experiments. Different models of thin metallic frameworks were designed and produced out of titanium by additive manufacturing (Selective Laser Melting). The productibility, the mechanical stability, the handling and suitability of several frame geometries were tested during surgery in artificial and in ex-vivo bone before a series of cages was preclinically investigated in the female Göttingen minipigs model. With our novel approach, a flexible process was established that can be adapted to the requirements of any specific animal model and bone graft testing.


2020 ◽  
Vol 61 (6) ◽  
pp. 188-200
Author(s):  
Malte Schroeder ◽  
Lennart Viezens ◽  
Jördis Sündermann ◽  
Svenja Hettenhausen ◽  
Gerrit Hauenherm ◽  
...  

Introduction: Prostate cancer has a special predilection to form bone metastases. Despite the known impact of the microvascular network on tumour growth and its dependence on the organ-specific microenvironment, the characteristics of the tumour vasculature in bone remain unknown. Methods: The cell lines LNCaP, DU145, and PC3 were implanted into the femurs of NSG mice to examine the microvascular properties of prostate cancer in bone. Tumour growth and the functional and morphological alterations of the microvasculature were analysed for 21 days in vivo using a transparent bone chamber and fluorescence microscopy. Results: Vascular density was significantly lower in tumour-bearing bone than in non-tumour-bearing bone, with a marked loss of small vessels. Accelerated blood flow velocity led to increased volumetric blood flow per vessel, but overall perfusion was not affected. All of the prostate cancer cell lines had similar vascular patterns, with more pronounced alterations in rapidly growing tumours. Despite minor differences between the prostate cancer cell lines associated with individual growth behaviours, the same overall pattern was observed and showed strong similarity to that of tumours growing in soft tissue. Discussion: The increase in blood flow velocity could be a specific characteristic of prostate cancer or the bone microenvironment.


2014 ◽  
Vol 60 (5) ◽  
pp. 215-222 ◽  
Author(s):  
Cristina Goga ◽  
Zeynep Firat ◽  
Klara Brinzaniuc ◽  
Is Florian

Abstract Objective: The ultimate anatomy of the Meyer’s loop continues to elude us. Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) may be able to demonstrate, in vivo, the anatomy of the complex network of white matter fibers surrounding the Meyer’s loop and the optic radiations. This study aims at exploring the anatomy of the Meyer’s loop by using DTI and fiber tractography. Methods: Ten healthy subjects underwent magnetic resonance imaging (MRI) with DTI at 3 T. Using a region-of-interest (ROI) based diffusion tensor imaging and fiber tracking software (Release 2.6, Achieva, Philips), sequential ROI were placed to reconstruct visual fibers and neighboring projection fibers involved in the formation of Meyer’s loop. The 3-dimensional (3D) reconstructed fibers were visualized by superimposition on 3-planar MRI brain images to enhance their precise anatomical localization and relationship with other anatomical structures. Results: Several projection fiber including the optic radiation, occipitopontine/parietopontine fibers and posterior thalamic peduncle participated in the formation of Meyer’s loop. Two patterns of angulation of the Meyer’s loop were found. Conclusions: DTI with DTT provides a complimentary, in vivo, method to study the details of the anatomy of the Meyer’s loop.


2021 ◽  
Vol 226 (4) ◽  
pp. 1155-1167 ◽  
Author(s):  
Anne C. Trutti ◽  
Laura Fontanesi ◽  
Martijn J. Mulder ◽  
Pierre-Louis Bazin ◽  
Bernhard Hommel ◽  
...  

AbstractFunctional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.


Blood ◽  
2010 ◽  
Vol 115 (15) ◽  
pp. 3128-3135 ◽  
Author(s):  
Gurpreet Kaur ◽  
Gauthami Jalagadugula ◽  
Guangfen Mao ◽  
A. Koneti Rao

Abstract Haploinsufficiency of RUNX1 (also known as CBFA2/AML1) is associated with familial thrombocytopenia, platelet dysfunction, and predisposition to acute leukemia. We have reported on a patient with thrombocytopenia and impaired agonist-induced aggregation, secretion, and protein phosphorylation associated with a RUNX1 mutation. Expression profiling of platelets revealed approximately 5-fold decreased expression of 12-lipoxygenase (12-LO, gene ALOX12), which catalyzes 12-hydroxyeicosatetraenoic acid production from arachidonic acid. We hypothesized that ALOX12 is a direct transcriptional target gene of RUNX1. In present studies, agonist-induced platelet 12-HETE production was decreased in the patient. Four RUNX1 consensus sites were identified in the 2-kb promoter region of ALOX12 (at −1498, −1491, −708, −526 from ATG). In luciferase reporter studies in human erythroleukemia cells, mutation of each site decreased activity; overexpression of RUNX1 up-regulated promoter activity, which was abolished by mutation of RUNX1 sites. Gel shift studies, including with recombinant protein, revealed RUNX1 binding to each site. Chromatin immunoprecipitation revealed in vivo RUNX1 binding in the region of interest. siRNA knockdown of RUNX1 decreased RUNX1 and 12-LO proteins. ALOX12 is a direct transcriptional target of RUNX1. Our studies provide further proof of principle that platelet expression profiling can elucidate novel alterations in platelets with inherited dysfunction.


1981 ◽  
Vol 51 (3) ◽  
pp. 750-754 ◽  
Author(s):  
V. J. Caiozzo ◽  
J. J. Perrine ◽  
V. R. Edgerton

Seventeen male and female subjects (ages 20–38 yr) were tested pre- and posttraining for maximal knee extension torque at seven specific velocities (0, 0.84, 1.68, 2.51, 3.35, 4.19, and 5.03 rad . s-1) with an isokinetic dynamometer. Maximal knee extension torques were recorded at a specific joint angle (0.52 rad below the horizontal plane) for all test speeds. Subjects were randomly assigned to one of three experimental groups: group A, control, n = 7; group B, training at 1.68 rad . s-1, n = 5; or group C, training at 4.19 rad . s-1, n = 5. Subjects trained the knee extensors by performing two sets of 10 single maximal voluntary efforts three times a week for 4 wk. Before training, each training group exhibited a leveling-off of muscular tension in the slow velocity-high force region of the in vivo force-velocity relationship. Training at 1.68 rad . s-1 resulted in significant (P less than 0.05) improvements at all velocities except for 5.03 rad . s-1 and markedly affected the leveling-off in the slow velocity-high force region. Training at 4.19 rad . s-1 did not affect the leveling-off phenomenon but brought about significant improvements (P less than 0.05) at velocities of 2.51, 3.35, and 4.19 rad . s-1. The changes seen in the leveling-off phenomenon suggest that training at 1.68 rad . s-1 might have brought about an enhancement of motoneuron activation.


2021 ◽  
Vol 11 (7) ◽  
pp. 3158
Author(s):  
Néstor J. Jarque-Bou ◽  
Margarita Vergara ◽  
Joaquín L. Sancho-Bru

Thumb opposition is essential for grasping, and involves the flexion and abduction of the carpometacarpal and metacarpophalangeal joints of the thumb. The high number of degrees of freedom of the thumb in a fairly small space makes the in vivo recording of its kinematics a challenging task. For this reason, along with the very limited independence of the abduction movement of the metacarpophalangeal joint, many devices do not implement sensors to measure such movement, which may lead to important implications in terms of the accuracy of thumb models. The aims of this work are to examine the correlation between thumb joints and to obtain an equation that allows thumb metacarpophalangeal abduction/adduction movement to be estimated from the other joint motions of the thumb, during the commonest grasps used during activities of daily living and in free movement. The correlation analysis shows that metacarpophalangeal abduction/adduction movement can be expressed mainly from carpometacarpal joint movements. The model thus obtained presents a low estimation error (6.29°), with no significant differences between grasps. The results could benefit most fields that do not typically include this joint movement, such as virtual reality, teleoperation, 3D modeling, prostheses, and exoskeletons.


2021 ◽  
Vol 6 (7) ◽  
pp. 107-113
Author(s):  
Charles Nnamdi Udekwe ◽  
Akinlolu Adediran Ponnle

The geometry of the imaged transverse cross-section of carotid arteries in in-vivo B-mode ultrasound images are most times irregular, unsymmetrical, full of speckles and usually non-uniform. We had earlier developed a technique of cardinal point symmetry landmark distribution model (CPS-LDM) to completely characterize the Region of Interest (ROI) of the geometric shape of thick-walled simulated B-mode ultrasound images of carotid artery imaged in the transverse plane, but this was based on the symmetric property of the image. In this paper, this developed technique was applied to completely characterize the region of interest of the geometric shape of in-vivo B-mode ultrasound images of non-uniform carotid artery imaged in the transverse plane. In order to adapt the CPS-LD Model to the in-vivo carotid artery images, the single VS-VS vertical symmetry line common to the four ROIs of the symmetric image is replaced with each ROI having its own VS-VS vertical symmetry line. This adjustment enables the in-vivo carotid artery images possess symmetric properties, hence, ensuring that all mathematical operations of the CPS-LD Model are conveniently applied to them. This adaptability was observed to work well in segmenting the in-vivo carotid artery images. This paper shows the adaptive ability of the developed CPS-LD Model to successfully annotate and segment in-vivo B-mode ultrasound images of carotid arteries in the transverse cross-sectional plane either they are symmetrical or unsymmetrical.


Sign in / Sign up

Export Citation Format

Share Document