scholarly journals Analysis, Design and Realization of a Furnace for In Situ Wettability Experiments at High Temperatures under X-ray Microtomography

2021 ◽  
Vol 7 (11) ◽  
pp. 240
Author(s):  
Roberto Fedele ◽  
Fareeha Hameed ◽  
Nicola Cefis ◽  
Gabriele Vergani

In this study, we analyzed the problem of a compact furnace, to be used for in situ experiments in a cone-beam X-ray microtomography commercial system. The design process was accomplished and outlined through its main steps, until the realization of a prototype. The furnace was conceived to carry out wettability experiments at temperatures up to 700 °C and under inert atmosphere on sessile droplets of a molten metal alloy, with a few millimeters diameter, posed on a thin ceramic substrate. X-ray imaging of the molten droplet is expected to permit an accurate three-dimensional reconstruction of the droplet profile and a robust estimation of the related quantities (such as the contact angle and the surface tension) utilized for the assessment of metal-ceramic joints by brazing. The challenges faced during this project, mostly related to the constraints of the setup, and the novel solutions implemented were discussed also with the support of analytical and numerical tools, in terms of interaction of X-rays with matter, geometry and working principle, heat transfer and insulation, material selection.

2018 ◽  
Vol 25 (5) ◽  
pp. 1478-1489 ◽  
Author(s):  
Rafael Vescovi ◽  
Ming Du ◽  
Vincent de Andrade ◽  
William Scullin ◽  
Dogˇa Gürsoy ◽  
...  

X-rays offer high penetration with the potential for tomography of centimetre-sized specimens, but synchrotron beamlines often provide illumination that is only millimetres wide. Here an approach is demonstrated termed Tomosaic for tomographic imaging of large samples that extend beyond the illumination field of view of an X-ray imaging system. This includes software modules for image stitching and calibration, while making use of existing modules available in other packages for alignment and reconstruction. The approach is compatible with conventional beamline hardware, while providing a dose-efficient method of data acquisition. By using parallelization on a distributed computing system, it provides a solution for handling teravoxel-sized or larger datasets that cannot be processed on a single workstation in a reasonable time. Using experimental data, the package is shown to provide good quality three-dimensional reconstruction for centimetre-sized samples with sub-micrometre pixel size.


2007 ◽  
Vol 561-565 ◽  
pp. 1677-1680 ◽  
Author(s):  
Tomomi Ohgaki ◽  
Y. Takami ◽  
Hiroyuki Toda ◽  
Toshiro Kobayashi ◽  
Y. Suzuki ◽  
...  

Three-dimensional zinc mapping based on X-ray K-edge scanning has been performed. By microtomographies with energies above and below the K-absorption edges of the elements, the concentration distribution of the elements is evaluated during in-situ experiments, respectively. It is found that the Zn concentration distribution during the heat treatment was changed inside the cell wall of the aluminum foams and it has been homogenized. Also several precipitated phase transformation can be three-dimensionally visualized by the CT-method tuning X-ray energies.


2016 ◽  
Vol 23 (5) ◽  
pp. 1241-1244 ◽  
Author(s):  
Wonsuk Cha ◽  
Wenjun Liu ◽  
Ross Harder ◽  
Ruqing Xu ◽  
Paul H. Fuoss ◽  
...  

A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible within situsample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifyingin situchamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.


Author(s):  
S. F. Nielsen ◽  
C. Gundlach ◽  
E. M. Lauridsen ◽  
R. V. Martins ◽  
H. F. Poulsen ◽  
...  

By Three Dimensional X-ray Diffraction (3DXRD) microscopy it is possible to characterize microstructures non-destructively in 3 dimensions. The measurements are furthermore typically so fast that dynamics may be monitored in-situ, giving also the 4th dimension, namely the time. The 3DXRD technique is based on diffraction of high energy x-rays from third generation synchrotron sources. In the present paper the 3DXRD technique is described and it’s potentials are illustrated by examples relating to elastic and plastic strains, recovery, recrystallization and grain growth.


MRS Bulletin ◽  
2004 ◽  
Vol 29 (3) ◽  
pp. 170-176 ◽  
Author(s):  
Gene E. Ice ◽  
Bennett C. Larson

AbstractIn this article, the authors describe the principle and application of differential-aperture x-ray microscopy (DAXM). This recently developed scanning x-ray microprobe technique uses a confocal or traveling pinhole camera approach to determine the crystal structure, crystallographic orientation, and elastic and plastic strain tensors within bulk materials. The penetrating properties of x-rays make the technique applicable to optically opaque as well as transparent materials, and it is nondestructive; this provides for in situ, submicrometer-resolution characterization of local crystal structure and for measurements of microstructure evolution on mesoscopic length scales from tenths to hundreds of micrometers. Examples are presented that illustrate the use of DAXM to study grain and subgrain morphology, grain-boundary types and networks, and local intra- and intergranular elastic and plastic deformation. Information of this type now provides a direct link between the actual structure and evolution in materials and increasingly powerful computer simulations and multiscale modeling of materials microstructure and evolution.


Author(s):  
S. Cusack ◽  
J.-C. Jésior

Three-dimensional reconstruction techniques using electron microscopy have been principally developed for application to 2-D arrays (i.e. monolayers) of biological molecules and symmetrical single particles (e.g. helical viruses). However many biological molecules that crystallise form multilayered microcrystals which are unsuitable for study by either the standard methods of 3-D reconstruction or, because of their size, by X-ray crystallography. The grid sectioning technique enables a number of different projections of such microcrystals to be obtained in well defined directions (e.g. parallel to crystal axes) and poses the problem of how best these projections can be used to reconstruct the packing and shape of the molecules forming the microcrystal.Given sufficient projections there may be enough information to do a crystallographic reconstruction in Fourier space. We however have considered the situation where only a limited number of projections are available, as for example in the case of catalase platelets where three orthogonal and two diagonal projections have been obtained (Fig. 1).


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1271
Author(s):  
Andreas Koenig ◽  
Leonie Schmohl ◽  
Johannes Scheffler ◽  
Florian Fuchs ◽  
Michaela Schulz-Siegmund ◽  
...  

The aim of the study was to investigate the effect of X-rays used in micro X-ray computer tomography (µXCT) on the mechanical performance and microstructure of a variety of dental materials. Standardised bending beams (2 × 2 × 25 mm3) were forwarded to irradiation with an industrial tomograph. Using three-dimensional datasets, the porosity of the materials was quantified and flexural strength was investigated prior to and after irradiation. The thermal properties of irradiated and unirradiated materials were analysed and compared by means of differential scanning calorimetry (DSC). Single µXCT measurements led to a significant decrease in flexural strength of polycarbonate with acrylnitril-butadien-styrol (PC-ABS). No significant influence in flexural strength was identified for resin-based composites (RBCs), poly(methyl methacrylate) (PMMA), and zinc phosphate cement (HAR) after a single irradiation by measurement. However, DSC results suggest that changes in the microstructure of PMMA are possible with increasing radiation doses (multiple measurements, longer measurements, higher output power from the X-ray tube). In summary, it must be assumed that X-ray radiation during µXCT measurement at high doses can lead to changes in the structure and properties of certain polymers.


Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


Sign in / Sign up

Export Citation Format

Share Document