scholarly journals Development of a Multidirectional Wire Arc Additive Manufacturing (WAAM) Process with Pure Object Manipulation: Process Introduction and First Prototypes

2021 ◽  
Vol 5 (4) ◽  
pp. 134
Author(s):  
Khushal Parmar ◽  
Lukas Oster ◽  
Samuel Mann ◽  
Rahul Sharma ◽  
Uwe Reisgen ◽  
...  

Wire Arc Additive Manufacturing (WAAM) with eccentric wire feed requires defined operating conditions due to the possibility of varying shapes of the deposited and solidified material depending on the welding torch orientation. In consequence, the produced component can contain significant errors because single bead geometrical errors are cumulatively added to the next layer during a building process. In order to minimise such inaccuracies caused by torch manipulation, this article illustrates the concept and testing of object-manipulated WAAM by incorporating robotic and welding technologies. As the first step towards this target, robotic hardware and software interfaces were developed to control the robot. Alongside, a fixture for holding the substrate plate was designed and fabricated. After establishing the robotic setup, in order to complete the whole WAAM process setup, a Gas Metal Arc Welding (GMAW) process was built and integrated into the system. Later, an experimental plan was prepared to perform single and multilayer welding experiments as well as for different trajectories. According to this plan, several welding experiments were performed to decide the parametric working range for the further WAAM experiments. In the end, the results of the first multilayer depositions over intricate trajectories are shown. Further performance and quality optimization strategies are also discussed at the end of this article.

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 892 ◽  
Author(s):  
Eider Aldalur ◽  
Fernando Veiga ◽  
Alfredo Suárez ◽  
Jon Bilbao ◽  
Aitzol Lamikiz

Additive manufacturing has gained relevance in recent decades as an alternative to the manufacture of metal parts. Among the additive technologies, those that are classified as Directed Energy Deposition (DED) are characterized by their high deposition rate, noticeably, Wire Arc Additive Manufacturing (WAAM). However, having the inability to produce parts with acceptable final surface quality and high geometric precision is to be considered an important disadvantage in this process. In this paper, different torch trajectory strategies (oscillatory motion and overlap) in the fabrication of low carbon steel walls will be compared using Gas Metal Arc Welding (GMAW)-based WAAM technology. The comparison is done with a study of the mechanical and microstructural characteristics of the produced walls and finally, addressing the productivity obtained utilizing each strategy. The oscillation strategy shows better results, regarding the utilization rate of deposited material and the flatness of the upper surface, this being advantageous for subsequent machining steps.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2671 ◽  
Author(s):  
Maximilian Gierth ◽  
Philipp Henckell ◽  
Yarop Ali ◽  
Jonas Scholl ◽  
Jean Pierre Bergmann

Large-scale aluminum parts are used in aerospace and automotive industries, due to excellent strength, light weight, and the good corrosion resistance of the material. Additive manufacturing processes enable both cost and time savings in the context of component manufacturing. Thereby, wire arc additive manufacturing (WAAM) is particularly suitable for the production of large volume parts due to deposition rates in the range of kilograms per hour. Challenges during the manufacturing process of aluminum alloys, such as porosity or poor mechanical properties, can be overcome by using arc technologies with adaptable energy input. In this study, WAAM of AlMg5Mn alloy was systematically investigated by using the gas metal arc welding (GMAW) process. Herein, correlations between the energy input and the resulting temperature–time-regimes show the effect on resulting microstructure, weld seam irregularities and the mechanical properties of additively manufactured aluminum parts. Therefore, multilayer walls were built layer wise using the cold metal transfer (CMT) process including conventional CMT, CMT advanced and CMT pulse advanced arc modes. These processing strategies were analyzed by means of energy input, whereby the geometrical features of the layers could be controlled as well as the porosity to area portion to below 1% in the WAAM parts. Furthermore, the investigations show the that mechanical properties like tensile strength and material hardness can be adapted throughout the energy input per unit length significantly.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2457
Author(s):  
Oleg Panchenko ◽  
Dmitry Kurushkin ◽  
Fedor Isupov ◽  
Anton Naumov ◽  
Ivan Kladov ◽  
...  

In wire arc additive manufacturing of Ti-alloy parts (Ti-WAAM) gas metal arc welding (GMAW) can be applied for complex parts printing. However, due to the specific properties of Ti, GMAW of Ti-alloys is complicated. In this work, three different types of metal transfer modes during Ti-WAAM were investigated: Cold Metal Transfer, controlled short circuiting metal transfer, and self-regulated metal transfer at a direct current with a negative electrode. Metal transfer modes were studied using captured waveform and high-speed video analysis. Using these modes, three walls were manufactured; the geometry preservation stability was estimated and compared using effective wall width calculation, the microstructure was analyzed using optical microscopy. Transfer process data showed that arc wandering depends not only on cathode spot instabilities, but also on anode processing properties. Microstructure analysis showed that each produced wall consists of phases and structures inherent for Ti-WAAM. α-basketweave in the center of and α-colony on the grain boundary of epitaxially grown β-grains were found with heat affected zone bands along the height of the walls, so that the microstructure did not depend on metal transfer dramatically. However, the geometry preservation stability was higher in the wall, produced with controlled short circuiting metal transfer.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2491 ◽  
Author(s):  
Philipp Henckell ◽  
Maximilian Gierth ◽  
Yarop Ali ◽  
Jan Reimann ◽  
Jean Pierre Bergmann

Wire arc additive manufacturing (WAAM) by gas metal arc welding (GMAW) is a suitable option for the production of large volume metal parts. The main challenge is the high and periodic heat input of the arc on the generated layers, which directly affects geometrical features of the layers such as height and width as well as metallurgical properties such as grain size, solidification or material hardness. Therefore, processing with reduced energy input is necessary. This can be implemented with short arc welding regimes and respectively energy reduced welding processes. A highly efficient strategy for further energy reduction is the adjustment of contact tube to work piece distance (CTWD) during the welding process. Based on the current controlled GMAW process an increase of CTWD leads to a reduction of the welding current due to increased resistivity in the extended electrode and constant voltage of the power source. This study shows the results of systematically adjusted CTWD during WAAM of low-alloyed steel. Thereby, an energy reduction of up to 40% could be implemented leading to an adaptation of geometrical and microstructural features of additively manufactured work pieces.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 678
Author(s):  
Mikel Casuso ◽  
Fernando Veiga ◽  
Alfredo Suárez ◽  
Trunal Bhujangrao ◽  
Eider Aldalur ◽  
...  

Gas Metal Arc Welding (GMAW) is a manufacturing technology included within the different Wire Arc Additive Manufacturing alternatives. These technologies have been generating great attention among scientists in recent decades. Its main qualities that make it highly productive with a large use of material with relatively inexpensive machine solutions make it a very advantageous technology. This paper covers the application of this technology for the manufacture of thin-walled parts. A finite element model is presented for estimating the deformations in this type of parts. This paper presents a simulation model that predicts temperatures with less than 5% error and deformations of the final part that, although quantitatively has errors of 20%, qualitatively allows to know the deformation modes of the part. Knowing the part areas subject to greater deformation may allow the future adaptation of deposition strategies or redesigns for their adaptation. These models are very useful both at a scientific and industrial level since when we find ourselves with a technology oriented to Near Net Shape (NNS) manufacturing where deformations are critical for obtaining the final part in a quality regime.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1245
Author(s):  
Fernando Veiga ◽  
Alfredo Suárez ◽  
Eider Aldalur ◽  
Trunal Bhujangrao

The symmetrical nature in the case of wall fabrication by wire arc additive manufacturing (WAAM) has been observed in the literature, but it has not been studied as a source of knowledge. This paper focuses on the comparative study of three drop transfer methods employing Gas Metal Arc Welding (GMAW) technology, one of the most reported for the manufacture of aluminum alloys. The transfer modes studied are the well-known pulsed GMAW, cold arc, and the newer pulsed AC. The novelty of the last transfer mode is the reversal of the polarity during the preparation phase of the substance for droplet deposition. This study compares the symmetry of zero beads to determine the best parameters and transfer modes for wire arc additive manufacturing of 5 series aluminum. The pulsed transfer modes show values of 0.6 for symmetry ratio, which makes them more interesting strategies than cold arc with a symmetry ratio of 0.5. Furthermore, the methodology proposed in this study can be extrapolated to other materials manufactured with this technology.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 513
Author(s):  
Jae Won Kim ◽  
Jae-Deuk Kim ◽  
Jooyoung Cheon ◽  
Changwook Ji

This study observed the effect of filler metal type on mechanical properties of NAB (NiAl-bronze) material fabricated using wire arc additive manufacturing (WAAM) technology. The selection of filler metal type is must consider the field condition, mechanical properties required by customers, and economics. This study analyzed the bead shape for representative two kind of filler metal types use to maintenance and fabricated a two-dimensional bulk NAB material. The cold metal transfer (CMT) mode of gas metal arc welding (GMAW) was used. For a comparison of mechanical properties, the study obtained three specimens per welding direction from the fabricated bulk NAB material. In the tensile test, the NAB material deposited using filler metal wire A showed higher tensile strength and lower elongation (approx. +71 MPa yield strength, +107.1 MPa ultimate tensile strength, −12.4% elongation) than that deposited with filler metal wire B. The reason is that, a mixture of tangled fine α platelets and dense lamellar eutectoid α + κIII structure with β´ phases was observed in the wall made with filler metal wire A. On the other hand, the wall made with filler metal wire B was dominated by coarse α phases and lamellar eutectoid α + κIII structure in between.


2017 ◽  
Vol 23 (5) ◽  
pp. 858-868 ◽  
Author(s):  
Somashekara M. Adinarayanappa ◽  
Suryakumar Simhambhatla

Purpose Twin-wire welding-based additive manufacturing (TWAM) is a unique process which uses gas metal arc welding (GMAW)-based twin-wire weld-deposition to create functionally gradient materials (FGMs). Presented study aims to focus on creating metallic objects with a hardness gradient using GMAW of twin-wire weld deposition setup. Design/methodology/approach By using dissimilar filler wires in twin-wire weld-deposition, it is possible to create metallic objects with varying hardness. This is made possible by individually controlling the proportion of each filler wire used. ER70S-6 and ER110S-G are the two filler wires used for the study; the former has lower hardness than the latter. In the current study, methodology and various experiments carried out to identify the suitable process parameters at a given location for a desired variation of hardness have been presented. A predictive model for obtaining the wire speed of the filler wires required for a desired value of hardness was also created. Subsequently, sample parts with gradient in various directions have been fabricated. Findings For dissimilar twin-wire weld-deposition used here, it is observed that the resultant hardness is in the volumetric proportion of the hardness of the individual filler wires. This aids the fabrication of FGMs using arc based weld-deposition with localized control of hardness, achieved through the control of the ratio of wire speeds of the individual filler wires. Four sample parts were fabricated to demonstrate the concept of realizing FGMs through TWAM. The fabricated parts showed good match with the desired hardness variation. Research limitations/implications This paper successfully presents the capability of TWAM for creating gradient metallic objects with varying hardness. Although developed using ER70S-6 and ER110S-G filler wire combination, the methodology can be extended for other filler wire combinations too for creating FGMs Originality/value GMAW-based twin-wire welding for additive manufacturing is a novel process which uses dissimilar filler wires for creating FGMs. This paper describes methodology of the same followed by illustration of parts created with bi-directional hardness gradient.


Sign in / Sign up

Export Citation Format

Share Document