scholarly journals Prediction of Flooded Compartment Damage Locations in Ships by Using Spectrum Analysis of Ship Motions in Waves

2021 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Hye-young Son ◽  
Hyeon-dong Roh ◽  
Gi-yong Kim ◽  
Sang-jin Oh ◽  
Jin Choi ◽  
...  

Considering the nature of marine accidents, even a single accident can result in significant damage to the environment and property, as well as loss of life. Therefore, the initial response should be rapid and accurate, and various decision support systems have been developed to achieve this. Research on simulating progressive flooding on board immediately after an accident is being actively conducted, but this requires high levels of computing power. In this study, a methodology for converting simulated ship motion data into a ship motion database is presented. The model of a training ship from the Korea Institute of Maritime and Fisheries Technology and KRISO in-house code SMTP was used for ship motion computations. The short-time Fourier transform was used to convert time-series motion data into a spectrogram motion database. A methodology for deriving a predicted location of the damage center is presented. The candidate locations of the damage centers were obtained by comparing the root mean square error values of the ship motion database from the simulation and real-time ship motion data. Finally, a probability function was suggested to confirm the predicted location of the damage center. Using 100 randomly selected test cases, our method showed 95% accuracy.

Author(s):  
Toshio Iseki

The time varying coefficient vector autoregressive (TVVAR) modeling is applied to the cross-spectral analysis of non-stationary ship motion data. Introducing the instantaneous response, a vector autoregressive model can be reduced to simple time varying coefficient autoregressive (TVAR) models for each ship motion and the required CPU time is effectively reduced. The TVVAR model and stochastic perturbed difference equations are transformed into a state space model. The vector-valued unknown coefficients can be evaluated and the instantaneous cross spectra of ship motions can be calculated at every moment. The results showed good agreements with one of the TVAR modeling and also with the stationary autoregressive (SAR) modeling analysis under stationary conditions. Furthermore, the instantaneous relative noise contribution was also estimated using the TVVAR coefficients and illustrated how the structure of a spectrum changed according to the ship manoeuvres for the first time. Optimum order of the model and Akaike’s information criterion were also examined for several changes of parameters. Moreover, it is confirmed that the TVVAR modeling can estimate the instantaneous cross spectra and relative noise contribution of ship motions even under non-stationary conditions.


2013 ◽  
Vol 712-715 ◽  
pp. 1550-1554
Author(s):  
Xin Dong Yang ◽  
Zuo Chao Wang ◽  
Ai Guo Shi ◽  
Bo Liu ◽  
Li Li

Wind and waves have particularly significant influence upon exertion of naval vessels battle effectiveness. It is urgently necessary to improve the ability of the Navy to carry out combat service in severe sea state normally. This paper aims to obtain the accurate prediction of ship motions with second level predictable time in real waves. According to the characteristics of the ship motion, the research on extremely short-time prediction of ship motion has been carried out based on multi-variable chaotic time series analysis, and the effectiveness of the prediction of ship motion in real wave is highly improved.


2017 ◽  
Author(s):  
James A. Coller ◽  
Andrew Silver ◽  
Okey Nwogu ◽  
Benjamin S.H. Connell

The US Nav has developed a real-time multi-ship ship motion forecasting system which combines forecast wave conditions with ship motion simulations to produce a prediction of the relative motions between two ships operating in a skin-to-skin configuration. The system utilizes two different simulation methods for predicting ship motions: MotionSim and Reduced Order Model (ROM) based on AEGIR. MotionSim is a fast three-dimensional panel method that is used to estimate the Response Amplitude Operators (RAOs) necessary for multi-ship motion predictions. The ROM works to maximize the accuracy of high fidelity ship motion prediction methods while maintaining the computational speed required for real-time forecasting. A model scale experiment was performed in 2015 on two Navy ships conventionally moored together. The predicted relative ship motions from MotionSim and ROM were compared to the model data using three different metrics: RMS (root mean square) ratio, correlation coefficient, and average angle measurement (AAM).This paper provides an overview of the two methods for predicting the multi-ship motions, a description of the model test, challenges faced during testing, and a discussion on the methodology of the evaluation and the results of each code correlation.


2021 ◽  
Vol 152 (A4) ◽  
Author(s):  
G Thomas ◽  
T Turner ◽  
T Andrewartha ◽  
B Morris

During replenishment at sea operations the interaction between the two vessels travelling side by side can cause significant motions in the smaller vessel and affect the relative separation between their replenishment points. A study into these motions has been conducted including theoretical predictions and model experiments. The model tests investigated the influence of supply ship displacement and longitudinal separation on the ships’ motions. The data obtained from the experimental study has been used to validate a theoretical ship motion prediction method based on a 3-D zero-speed Green function with a forward speed correction in the frequency domain. The results were also used to estimate the expected extreme roll angle of the receiving vessel, and the relative motion between the vessels, during replenishment at sea operations in a typical irregular seaway. A significant increase in the frigate’s roll response was found to occur with an increase of the supply ship displacement, whilst a reduction in motion for the receiving vessel resulted from an increase in longitudinal separation between the vessels. It is proposed that to determine the optimal vessel separation it is vital that the motions of the vessels are not considered in isolation and all motions need to be considered for both vessels simultaneously.


Author(s):  
Dimitris Spanos ◽  
Apostolos Papanikolaou ◽  
George Tzabiras

The effect of trapped water on deck or the interior compartments of ships on ship motions is closely investigated by use of a non-linear numerical simulation method. The employed method enables the efficient simulation of the wave excited, coupled ship – trapped water motions and proves to be a very valuable tool for the assessment of the survivability of flooded ships in waves. A detailed study has been carried out to more carefully investigate the coupling effects between the ship and the floodwater mass that can be expressed through a resultant interaction force. This interaction force has been approximated both by a simplified model employed by the present simulation method and also by a more accurate CFD code and satisfactory agreement between the results of both approaches has been obtained.


Author(s):  
Toshio Iseki

The Bayesian modeling procedure is modified for real-time estimation of directional wave spectra using non-stationary ship motion data. The assumption of stationary stochastic processes is applied to the seaway, but not to ship response because it also depends on ship maneuvers. Ship response is strongly affected by changes in the encounter angle and frequency of waves. Therefore, it is need to be a real-time algorithm that can deal with non-stationary stochastic processes and estimate the directional wave spectra. In the proposed algorithm, the iterative calculations of the non-linear equations were optimized and the convergence was not achieved at every time step, but was achieved gradually over several time steps. In order to examine the reliability of the proposed method, real-time estimation was conducted by using the data of onboard experiments. Comparisons between the results of the proposed algorithm and a wave monitoring radar system show good agreements.


Information ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 143
Author(s):  
Tomasz Gałecki ◽  
Wiktor Bohdan Daszczuk

Despite the rapidly growing computing power of computers, it is often insufficient to perform mass calculations in a short time, for example, simulation of systems for various sets of parameters, the searching of huge state spaces, optimization using ant or genetic algorithms, machine learning, etc. One can solve the problem of a lack of computing power through workload management systems used in local networks in order to use the free computing power of servers and workstations. This article proposes raising such a system to a higher level of abstraction: The use in the .NET environment of a new Shapp library that allows remote task execution using fork-like operations from Portable Operating System Interface for UNIX (POSIX) systems. The library distributes the task code, sending static data on which task force is working, and individualizing tasks. In addition, a convenient way of communicating distributed tasks running hierarchically in the Shapp library was proposed to better manage the execution of these tasks. Many different task group architectures are possible; we focus on tree-like calculations that are suitable for many problems where the range of possible parallelism increases as the calculations progress.


1995 ◽  
Vol 2 (6) ◽  
pp. 437-444 ◽  
Author(s):  
Howard A. Gaberson

This article discusses time frequency analysis of machinery diagnostic vibration signals. The short time Fourier transform, the Wigner, and the Choi–Williams distributions are explained and illustrated with test cases. Examples of Choi—Williams analyses of machinery vibration signals are presented. The analyses detect discontinuities in the signals and their timing, amplitude and frequency modulation, and the presence of different components in a vibration signal.


Sign in / Sign up

Export Citation Format

Share Document