scholarly journals L2-Gain-Based Practical Stabilization of an Underactuated Surface Vessel

2021 ◽  
Vol 9 (3) ◽  
pp. 341
Author(s):  
Weilin Luo ◽  
Xin Qi

To obtain a stabilizer for an underactuated surface vessel with disturbances, an L2-gain design is proposed. Surge, sway, and yaw motions are considered in the dynamics of a surface ship. To ob-tain a robust adaptive controller, a diffeomorphism transformation and the Lyapunov function are employed in controller design. Two auxiliary controllers are introduced for an equivalent sys-tem after the diffeomorphism transformation. Different from the commonly used disturbance ob-server-based approach, the L2-gain design is used to suppress random uncertain disturbances in ship dynamics. To evaluate the controller performance in suppressing disturbances, two error sig-nals are defined in which the variables to be stabilized are incorporated. Both time-invariant dis-continuous and continuous feedback laws are proposed to obtain the control system. Stability analysis and simulation results demonstrate the validity of the controllers proposed. A comparison with a sliding mode controller is performed, and the results prove the advantage of the proposed controller in terms of faster convergence rate and chattering avoidance.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Bailing Tian ◽  
Wenru Fan ◽  
Qun Zong ◽  
Jie Wang ◽  
Fang Wang

This paper describes the design of a nonlinear robust adaptive controller for a flexible hypersonic vehicle model which is nonlinear, multivariable, and unstable, and includes uncertain parameters. Firstly, a control-oriented model is derived for controller design. Then, the model analysis is conducted for this model via input-output (I/O) linearized technique. Secondly, the sliding mode manifold is designed based on the homogeneity theory. Then, the adaptive high order sliding mode controller is designed to achieve the tracking for hypersonic vehicle where the upper bounds of the uncertainties are not known in advance. Furthermore, the stability of the system is proved via the Lyapunov theory. Finally, the Monte-Carlo simulation results on the full-order nonlinear model with aerodynamic uncertainties are provided to demonstrate the effectiveness of the proposed control strategy.


2005 ◽  
Vol 128 (2) ◽  
pp. 352-358 ◽  
Author(s):  
C. Treesatayapun ◽  
S. Uatrongjit

This paper presents a direct adaptive controller for chaotic systems. The proposed adaptive controller is constructed using the network called fuzzy rules emulated network (FREN). FREN’s structure is based on human knowledge in the form of fuzzy rules. Parameter adaptation algorithm based on the steepest descent method is presented to fine tune the controller’s performance. To improve the system stability, the modified sliding mode algorithm is applied to estimate the upper and lower bounds of the control effort. The suitable control effort is generated by FREN and kept within these bounds. Some computer simulations of using the controller to control the Hénon map have been performed to demonstrate the performance of the proposed controller.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Zhijian Huang ◽  
Xinze Liu ◽  
Jiayi Wen ◽  
Guichen Zhang ◽  
Yihua Liu

The feedback PID method was mainly used for the navigating control of an unmanned surface vessel (USV). However, when the intelligent control era is coming now, the USV can be navigated more effectively. According to the USV character in its navigating control, this paper presents a parallel action-network ADHDP method. This method connects an adaptive controller parallel to the action network of the ADHDP. The adaptive controller adopts a RBF neural network approximation based on the Lyapunov stability analysis to ensure the system stability. The simulation results show that the parallel action-network ADHDP method has an adaptive control character and can navigate the USV more accurately and rapidly. In addition, this method can also eliminate the overshoot of the ADHDP controller when navigating the USV in various situations. Therefore, the adaptive stability design can greatly improve the navigating control and effectively overcome the ADHDP algorithm limitation. Thus, this adaptive control can be one of the intelligent ADHDP control methods. Furthermore, this method will be a foundation for the development of an intelligent USV controller.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Lihua Liang ◽  
Mingxiao Sun ◽  
Tiantian Luan

An adaptive sliding mode controller based on fuzzy input design is presented, in order to reduce the roll motion of surface vessel fin stabilizers with shock and vibration of waves. The nonlinearities and uncertainties of the system including feedback errors and disturbance induced by waves are analyzed. And the lift-feedback system is proposed, which improves the shortage of conventional fin angle-feedback. Then the fuzzy input-based adaptive sliding mode control is designed for the system. In the controller design, the Lyapunov function is adopted to guarantee the system stability. Finally, experimental results demonstrate the superior performance of the controller designed using fuzzy input, when compared to the PID controller used in practical engineering.


Author(s):  
Sophie Klecker ◽  
Peter Plapper

This paper addresses the control problem for trajectory tracking of a class of robotic manipulators presenting uncertainties and switching constraints using a biomimetic approach. Uncertainties, system-inherent as well as environmental disturbances deteriorate the performance of the system. A change in constraints between the robot’s end-effector and the environment resulting in a switched nonlinear system, undermines the stable system performance. In this work, a robust adaptive controller combining sliding mode control and BELBIC (Brain Emotional Learning-Based Intelligent Control) is suggested to remediate the expected impacts on the overall system tracking performance and stability. The controller is based on an interplay of inputs relating to environmental information through error-signals of position and sliding surfaces and of emotional signals regulating the learning rate and adapting the future behaviour based on prior experiences. The proposed control algorithm is designed to be applicable to discontinuous freeform geometries. Its stability is proven theoretically and a simulation, performed on a two-link manipulator verifies its efficacy.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guoqiang Zhu ◽  
Lingfang Sun ◽  
Xiuyu Zhang

A neural network robust control is proposed for a class of generic hypersonic flight vehicles with uncertain dynamics and stochastic disturbance. Compared with the present schemes of dealing with dynamic uncertainties and stochastic disturbance, the outstanding feature of the proposed scheme is that only one parameter needs to be estimated at each design step, so that the computational burden can be greatly reduced and the designed controller is much simpler. Moreover, by introducing a performance function in controller design, the prespecified transient and performance of tracking error can be guaranteed. It is proved that all signals of closed-loop system are uniformly ultimately bounded. The simulation results are carried out to illustrate effectiveness of the proposed control algorithm.


2021 ◽  
Author(s):  
GUILHERME VIEIRA HOLLWEG ◽  
PAULO JEFFERSON DIAS DE OLIVEIRA EVALD ◽  
EVERSON MATTOS ◽  
RODRIGO VARELLA TAMBARA ◽  
HILTON ABíLIO GRüNDLING

This article presents a discrete robust adaptive control structure, gathering a Robust Model Reference Adaptive Controller (RMRAC) with an adaptive Super-Twisting Sliding Mode (STSM) controller. The resulting control structure is applied to current control of a voltage-fed three-phase inverter, connected to the grid by an LCL filter. The main contribution of this control proposal is its adaptability, maintaining the robustness characteristics of the controllers that compose it with good regulation performance. Moreover, as the adaptive Sliding Mode action is high-order (Super-Twisting), the chattering phenomenon is significantly mitigated. Thereby, its implementation is simplified, using a first order reference model. For this, the dynamics of the LCL filter capacitors are neglected during the modeling process, considering it as an additive unmodeled dynamics. To validate the viability of the proposed control structure, Hardware in the Loop (HIL) results are presented.


2019 ◽  
Vol 16 (2) ◽  
pp. 172988141984022 ◽  
Author(s):  
Yanping Deng

A sliding mode adaptive fractional fuzzy control is provided in this article to achieve the trajectory tracking control of uncertain robotic manipulators. By adaptive fractional fuzzy control, we mean that fuzzy parameters are updated through fractional-order adaptation laws. The main idea of this work consists in using fractional input to control complex integer-order nonlinear systems. An adaptive fractional fuzzy control that guarantees tracking errors tend to an arbitrary small region is established. To facilitate the stability analysis, fractional-order integral Lyapunov functions are proposed, and the integer-order Lyapunov stability criterion is used. Finally, simulation results are presented to show the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document