scholarly journals Triads and Rogue Events for Internal Waves in Stratified Fluids with a Constant Buoyancy Frequency

2021 ◽  
Vol 9 (6) ◽  
pp. 577
Author(s):  
Qing Pan ◽  
Hui-Min Yin ◽  
Kwok W. Chow

Internal waves in a stratified fluid with a constant buoyancy frequency were studied, with special attention given to rogue modes, extreme waves, dynamical evolution, and Fermi–Pasta–Ulam–Tsingou type recurrence phenomena. Rogue waves for triads in a general physical setting have recently been derived analytically, but the implications in a fluid mechanics context have not yet been fully assessed. Numerical simulations were conducted for cases of coupled triads where the common member is a daughter wave mode. In sharp contrast with previous studies, rogue modes instead of plane waves were used as the initial condition. Furthermore, spatial dependence was incorporated. Rogue or extreme waves in one set of triads provided a possible mechanism for significant energy transfer among modes of the internal wave spectrum, in addition to the other known theories, e.g., weak turbulence. Remarkably, Fermi–Pasta–Ulam–Tsingou recurrence types of growth and decay cycles arose, similarly to those observed for surface gravity wave groups governed by the cubic nonlinear Schrödinger equation. These mechanisms will enhance our understanding of transport processes in oceans.

2019 ◽  
Vol 19 (3) ◽  
pp. 583-587 ◽  
Author(s):  
Kwok Wing Chow ◽  
Hiu Ning Chan ◽  
Roger H. J. Grimshaw

Abstract. Unexpectedly large displacements in the interior of the oceans are studied through the dynamics of packets of internal waves, where the evolution of these displacements is governed by the nonlinear Schrödinger equation. In cases with a constant buoyancy frequency, analytical treatment can be performed. While modulation instability in surface wave packets only arises for sufficiently deep water, “rogue” internal waves may occur in shallow water and intermediate depth regimes. A dependence on the stratification parameter and the choice of internal modes can be demonstrated explicitly. The spontaneous generation of rogue waves is tested here via numerical simulation.


2018 ◽  
Author(s):  
Kwok Wing Chow ◽  
Hiu Ning Chan ◽  
Roger H. J. Grimshaw

Abstract. The occurrence of unexpectedly large displacements in the interior of the oceans is studied through the dynamics of packets of internal waves, where the evolution is governed by the nonlinear Schrödinger equation. The case of constant buoyancy frequency permits analytical treatment. While modulation instability for surface waves only arises for sufficiently deep water, rogue internal waves may occur if the fluid depth is shallow. The dependence on the stratification parameter and choice of internal modes can be demonstrated explicitly. The spontaneous generation of rogue waves is tested by numerical simulations.


2014 ◽  
Vol 747 ◽  
pp. 605-634 ◽  
Author(s):  
G. M. Reznik

AbstractWe examine nonlinear geostrophic adjustment in a rapidly rotating (small Rossby number Ro) stably neutrally stratified (SNS) fluid consisting of a stratified upper layer with $N>f$ ($N$ is the buoyancy frequency, $f$ the Coriolis parameter) and a homogeneous lower layer, the density and other fields being continuous at the interface between the layers. The angular speed of rotation is non-parallel to gravity; the traditional and hydrostatic approximations are not used. The wave spectrum in the model consists of internal and gyroscopic waves. During the adjustment an arbitrary long-wave perturbation is split in a unique way into slow quasi-geostrophic (QG) and fast ageostrophic components with typical time scales $(Ro\, f)^{-1}$ and $f^{-1}$, respectively. The QG flow is governed by two coupled nonlinear equations of conservation of QG potential vorticity (PV) in the layers. The fast component is a sum of internal waves and inertial oscillations (long gyroscopic waves) confined to the homogeneous layer and modulated by an amplitude depending on coordinates and slow time. On times $t\sim (\, f\, Ro)^{-1}$ the slow component is not influenced by the fast one but the inertial oscillations amplitude is coupled to the QG flow and obeys an equation practically coinciding with that in the barotropic case (Reznik, J. Fluid Mech., vol. 743, 2014, pp. 585–605). A non-stationary boundary layer with large vertical gradients of horizontal velocity develops in the stratified layer near the interface to prevent penetration of the inertial oscillations into the stratified fluid; an analogous weaker boundary layer arises near the upper rigid lid. At large times the internal waves gradually decay because of dispersion and the resulting motion consists of the slow QG component and inertial oscillations confined to the barotropic lower layer.


Author(s):  
Odin Gramstad ◽  
Elzbieta Bitner-Gregersen

Abstract An important question in the context of rogue waves is whether the statistical properties of individual waves, and in particular the probability of extreme and rogue waves, can be linked to the properties of the underlying wave spectrum of the relevant sea state. It has been suggested that a narrow wave spectrum (in frequency or direction) combined with a large wave steepness may lead to increased occurrence of extreme waves. Parameters based on the ratio of the wave steepness to the spectral band-widths have therefore been suggested as indicators of increased probability of extreme waves. However, for realistic ocean conditions the success of such parameters seems to be questionable. In this paper, we investigate relations between short-time wave statistics and wave spectral properties by using machine learning methods that can take a much wider range of spectral properties, or even the entire directional wave spectrum, into account. Numerical simulations with a nonlinear wave model that provides phase-resolved wave information are combined with wave spectra from a spectral wave model. Machine learning methods are then employed to investigate how well the wave statistics can be predicted from knowledge about the wave spectrum. The results are discussed in the context of existing parameters suggested as indicators of rogue waves, as well as with respect to potential warning against sea states in which extreme waves are expected to occur, based on wave-forecast from spectral wave models.


2001 ◽  
Vol 428 ◽  
pp. 349-386 ◽  
Author(s):  
E. J. STRANG ◽  
H. J. S. FERNANDO

The results of a laboratory experiment designed to study turbulent entrainment at sheared density interfaces are described. A stratified shear layer, across which a velocity difference ΔU and buoyancy difference Δb is imposed, separates a lighter upper turbulent layer of depth D from a quiescent, deep lower layer which is either homogeneous (two-layer case) or linearly stratified with a buoyancy frequency N (linearly stratified case). In the parameter ranges investigated the flow is mainly determined by two parameters: the bulk Richardson number RiB = ΔbD/ΔU2 and the frequency ratio fN = ND=ΔU.When RiB > 1.5, there is a growing significance of buoyancy effects upon the entrainment process; it is observed that interfacial instabilities locally mix heavy and light fluid layers, and thus facilitate the less energetic mixed-layer turbulent eddies in scouring the interface and lifting partially mixed fluid. The nature of the instability is dependent on RiB, or a related parameter, the local gradient Richardson number Rig = N2L/ (∂u/∂z)2, where NL is the local buoyancy frequency, u is the local streamwise velocity and z is the vertical coordinate. The transition from the Kelvin–Helmholtz (K-H) instability dominated regime to a second shear instability, namely growing Hölmböe waves, occurs through a transitional regime 3.2 < RiB < 5.8. The K-H activity completely subsided beyond RiB ∼ 5 or Rig ∼ 1. The transition period 3.2 < RiB < 5 was characterized by the presence of both K-H billows and wave-like features, interacting with each other while breaking and causing intense mixing. The flux Richardson number Rif or the mixing efficiency peaked during this transition period, with a maximum of Rif ∼ 0.4 at RiB ∼ 5 or Rig ∼ 1. The interface at 5 < RiB < 5.8 was dominated by ‘asymmetric’ interfacial waves, which gradually transitioned to (symmetric) Hölmböe waves at RiB > 5:8.Laser-induced fluorescence measurements of both the interfacial buoyancy flux and the entrainment rate showed a large disparity (as large as 50%) between the two-layer and the linearly stratified cases in the range 1.5 < RiB < 5. In particular, the buoyancy flux (and the entrainment rate) was higher when internal waves were not permitted to propagate into the deep layer, in which case more energy was available for interfacial mixing. When the lower layer was linearly stratified, the internal waves appeared to be excited by an ‘interfacial swelling’ phenomenon, characterized by the recurrence of groups or packets of K-H billows, their degeneration into turbulence and subsequent mixing, interfacial thickening and scouring of the thickened interface by turbulent eddies.Estimation of the turbulent kinetic energy (TKE) budget in the interfacial zone for the two-layer case based on the parameter α, where α = (−B + ε)/P, indicated an approximate balance (α ∼ 1) between the shear production P, buoyancy flux B and the dissipation rate ε, except in the range RiB < 5 where K-H driven mixing was active.


2017 ◽  
Vol 829 ◽  
pp. 280-303 ◽  
Author(s):  
S. Haney ◽  
W. R. Young

Groups of surface gravity waves induce horizontally varying Stokes drift that drives convergence of water ahead of the group and divergence behind. The mass flux divergence associated with spatially variable Stokes drift pumps water downwards in front of the group and upwards in the rear. This ‘Stokes pumping’ creates a deep Eulerian return flow that sets the isopycnals below the wave group in motion and generates a trailing wake of internal gravity waves. We compute the energy flux from surface to internal waves by finding solutions of the wave-averaged Boussinesq equations in two and three dimensions forced by Stokes pumping at the surface. The two-dimensional (2-D) case is distinct from the 3-D case in that the stratification must be very strong, or the surface waves very slow for any internal wave (IW) radiation at all. On the other hand, in three dimensions, IW radiation always occurs, but with a larger energy flux as the stratification and surface wave (SW) amplitude increase or as the SW period is shorter. Specifically, the energy flux from SWs to IWs varies as the fourth power of the SW amplitude and of the buoyancy frequency, and is inversely proportional to the fifth power of the SW period. Using parameters typical of short period swell (e.g. 8 s SW period with 1 m amplitude) we find that the energy flux is small compared to both the total energy in a typical SW group and compared to the total IW energy. Therefore this coupling between SWs and IWs is not a significant sink of energy for the SWs nor a source for IWs. In an extreme case (e.g. 4 m amplitude 20 s period SWs) this coupling is a significant source of energy for IWs with frequency close to the buoyancy frequency.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Giulia Marcucci ◽  
Davide Pierangeli ◽  
Aharon J. Agranat ◽  
Ray-Kuang Lee ◽  
Eugenio DelRe ◽  
...  

Abstract From optics to hydrodynamics, shock and rogue waves are widespread. Although they appear as distinct phenomena, transitions between extreme waves are allowed. However, these have never been experimentally observed because control strategies are still missing. We introduce the new concept of topological control based on the one-to-one correspondence between the number of wave packet oscillating phases and the genus of toroidal surfaces associated with the nonlinear Schrödinger equation solutions through Riemann theta functions. We demonstrate the concept experimentally by reporting observations of supervised transitions between waves with different genera. Considering the box problem in a focusing photorefractive medium, we tailor the time-dependent nonlinearity and dispersion to explore each region in the state diagram of the nonlinear wave propagation. Our result is the first realization of topological control of nonlinear waves. This new technique casts light on shock and rogue waves generation and can be extended to other nonlinear phenomena.


2016 ◽  
Vol 46 (8) ◽  
pp. 2457-2481 ◽  
Author(s):  
Yusuke Kawaguchi ◽  
Shigeto Nishino ◽  
Jun Inoue ◽  
Katsuhisa Maeno ◽  
Hiroki Takeda ◽  
...  

AbstractThe Arctic Ocean is known to be quiescent in terms of turbulent kinetic energy (TKE) associated with internal waves. To investigate the current state of TKE in the seasonally ice-free Chukchi Plateau, Arctic Ocean, this study performed a 3-week, fixed-point observation (FPO) using repeated microstructure, hydrographic, and current measurements in September 2014. During the FPO program, the microstructure observation detected noticeable peaks of TKE dissipation rate ε during the transect of an anticyclonic eddy moving across the FPO station. Particularly, ε had a significant elevation in the lower halocline layer, near the critical level, reaching the order of 10−8 W kg−1. The ADCP-measured current displayed energetic near-inertial internal waves (NIWs) propagating via the stratification at the top and bottom of the anticyclone. According to spectral analyses of horizontal velocity, the waves had almost downward energy propagation, and its current amplitude reached ~10 cm s−1. The WKB scaling, incorporating vertical variations of relative vorticity, suggests that increased wave energy near the two pycnoclines was associated with diminishing group velocity at the corresponding depths. The finescale parameterization using observed near-inertial velocity and buoyancy frequency successfully reproduced the characteristics of observed ε, supporting that the near-inertial kinetic energy can be effectively dissipated into turbulence near the critical layer. According to a mixed layer slab model, a rapidly moving storm that has passed over in the first week likely delivered the bulk of NIW kinetic energy, eventually captured by the vortex, into the surface water.


2006 ◽  
Vol 36 (6) ◽  
pp. 1136-1147 ◽  
Author(s):  
Glenn S. Carter ◽  
Michael C. Gregg

Abstract Near-diurnal internal waves were observed in velocity and shear measurements from a shipboard survey along a 35-km section of the Kaena Ridge, northwest of Oahu. Individual waves with upward phase propagation could be traced for almost 4 days even though the ship transited approximately 20 km. Depth–time maps of shear were dominated by near-diurnal waves, despite the fact that Kaena Ridge is a site of considerable M2 barotropic-to-baroclinic conversion. Guided by recent numerical and observational studies, it was found that a frequency of ½M2 (i.e., 24.84-h period) was consistent with these waves. Nonlinear processes are able to transfer energy within the internal wave spectrum. Bicoherence analysis, which can distinguish between nonlinearly coupled waves and waves that have been independently excited, suggested that the ½M2 waves were nonlinearly coupled with the dominant M2 internal tide only between 525- and 595-m depth. This narrow depth range corresponded to an observed M2 characteristic emanating from the northern edge of the ridge. The observations occurred in close proximity to the internal tide generation region, implying a rapid transfer of energy between frequencies. Strong nonlinear interactions seem a likely mechanism. Nonlinear transfers such as these could complicate attempts to close local single-constituent tidal energy budgets.


2016 ◽  
Vol 73 (6) ◽  
pp. 2465-2484 ◽  
Author(s):  
Orli Lachmy ◽  
Nili Harnik

Abstract The wave spectrum and zonal-mean-flow maintenance in different flow regimes of the jet stream are studied using a two-layer modified quasigeostrophic (QG) model. As the wave energy is increased by varying the model parameters, the flow transitions from a subtropical jet regime to a merged jet regime and then to an eddy-driven jet regime. The subtropical jet is maintained at the Hadley cell edge by zonal-mean advection of momentum, while eddy heat flux and eddy momentum flux convergence (EMFC) are weak and concentrated far poleward. The merged jet is narrow and persistent and is maintained by EMFC from a narrow wave spectrum, dominated by zonal wavenumber 5. The eddy-driven jet is wide and fluctuating and is maintained by EMFC from a wide wave spectrum. The wave–mean flow feedback mechanisms that maintain each regime are explained qualitatively. The regime transitions are related to transitions in the wave spectrum. An analysis of the wave energy spectrum budget and a comparison with a quasi-linear version of the model show that the balance maintaining the spectrum in the merged and subtropical jet regimes is mainly a quasi-linear balance, whereas in the eddy-driven jet regime nonlinear inverse energy cascade takes place. The amplitude and wavenumber of the dominant wave mode in the merged and subtropical jet regimes are determined by the constraint that this mode would produce the wave fluxes necessary for maintaining a mean flow that is close to neutrality. In contrast, the equilibrated mean flow in the eddy-driven jet regime is weakly unstable.


Sign in / Sign up

Export Citation Format

Share Document