scholarly journals Use of Genetic Programming for the Estimation of CODLAG Propulsion System Parameters

2021 ◽  
Vol 9 (6) ◽  
pp. 612
Author(s):  
Nikola Anđelić ◽  
Sandi Baressi Šegota ◽  
Ivan Lorencin ◽  
Igor Poljak ◽  
Vedran Mrzljak ◽  
...  

In this paper, the publicly available dataset for the Combined Diesel-Electric and Gas (CODLAG) propulsion system was used to obtain symbolic expressions for estimation of fuel flow, ship speed, starboard propeller torque, port propeller torque, and total propeller torque using genetic programming (GP) algorithm. The dataset consists of 11,934 samples that were divided into training and testing portions in an 80:20 ratio. The training portion of the dataset which consisted of 9548 samples was used to train the GP algorithm to obtain symbolic expressions for estimation of fuel flow, ship speed, starboard propeller, port propeller, and total propeller torque, respectively. After the symbolic expressions were obtained the testing portion of the dataset which consisted of 2386 samples was used to measure estimation performance in terms of coefficient of correlation (R2) and Mean Absolute Error (MAE) metric, respectively. Based on the estimation performance in each case three best symbolic expressions were selected with and without decay state coefficients. From the conducted investigation, the highest R2 and lowest MAE values were achieved with symbolic expressions for the estimation of fuel flow, ship speed, starboard propeller torque, port propeller torque, and total propeller torque without decay state coefficients while symbolic expressions with decay state coefficients have slightly lower estimation performance.

2020 ◽  
Vol 58 (1) ◽  
pp. 25-38
Author(s):  
Sandi Baressi Šegota ◽  
Daniel Štifanić ◽  
Kazuhiro Ohkura ◽  
Zlatan Car

An artificial neural network (ANN) approach is proposed to the problem of estimating the propeller torques of a frigate using combined diesel, electric and gas (CODLAG) propulsion system. The authors use a multilayer perceptron (MLP) feed-forward ANN trained with data from a dataset which describes the decay state coefficients as outputs and system parameters as inputs – with a goal of determining the propeller torques, removing the decay state coefficients and using the torque values of the starboard and port propellers as outputs. A total of 53760 ANNs are trained – 26880 for each of the propellers, with a total 8960 parameter combinations. The results are evaluated using mean absolute error (MAE) and coefficient of determination (R2). Best results for the starboard propeller are MAE of 2.68 [Nm], and MAE of 2.58 [Nm] for the port propeller with following ANN configurations respectively: 2 hidden layers with 32 neurons and identity activation and 3 hidden layers with 16, 32 and 16 neurons and identity activation function. Both configurations achieve R2 value higher than 0.99.


Pomorstvo ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 323-337
Author(s):  
Nikola Anđelić ◽  
Sandi Baressi Šegota ◽  
Ivan Lorencin ◽  
Zlatan Car

In this paper, the publicly available dataset of condition based maintenance of combined diesel-electric and gas (CODLAG) propulsion system for ships has been utilized to obtain symbolic expressions which could estimate gas turbine shaft torque and fuel flow using genetic programming (GP) algorithm. The entire dataset consists of 11934 samples that was divided into training and testing portions of dataset in an 80:20 ratio. The training dataset used to train the GP algorithm to obtain symbolic expressions for gas turbine shaft torque and fuel flow estimation consisted of 9548 samples. The best symbolic expressions obtained for gas turbine shaft torque and fuel flow estimation were obtained based on their R2 score generated as a result of the application of the testing portion of the dataset on the aforementioned symbolic expressions. The testing portion of the dataset consisted of 2386 samples. The three best symbolic expressions obtained for gas turbine shaft torque estimation generated R2 scores of 0.999201, 0.999296, and 0.999374, respectively. The three best symbolic expressions obtained for fuel flow estimation generated R2 scores of 0.995495, 0.996465, and 0.996487, respectively.


2020 ◽  
Vol 15 ◽  
Author(s):  
Fahad Layth Malallah ◽  
Baraa T. Shareef ◽  
Mustafah Ghanem Saeed ◽  
Khaled N. Yasen

Aims: Normally, the temperature increase of individuals leads to the possibility of getting a type of disease, which might be risky to other people such as coronavirus. Traditional techniques for tracking core-temperature require body contact either by oral, rectum, axillary, or tympanic, which are unfortunately considered intrusive in nature as well as causes of contagion. Therefore, sensing human core-temperature non-intrusively and remotely is the objective of this research. Background: Nowadays, increasing level of medical sectors is a necessary targets for the research operations, especially with the development of the integrated circuit, sensors and cameras that made the normal life easier. Methods: The solution is by proposing an embedded system consisting of the Arduino microcontroller, which is trained with a model of Mean Absolute Error (MAE) analysis for predicting Contactless Core-Temperature (CCT), which is the real body temperature. Results: The Arduino is connected to an Infrared-Thermal sensor named MLX90614 as input signal, and connected to the LCD to display the CCT. To evaluate the proposed system, experiments are conducted by participating 31-subject sensing contactless temperature from the three face sub-regions: forehead, nose, and cheek. Conclusion: Experimental results approved that CCT can be measured remotely depending on the human face, in which the forehead region is better to be dependent, rather than nose and cheek regions for CCT measurement due to the smallest


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2670
Author(s):  
Thomas Quirin ◽  
Corentin Féry ◽  
Dorian Vogel ◽  
Céline Vergne ◽  
Mathieu Sarracanie ◽  
...  

This paper presents a tracking system using magnetometers, possibly integrable in a deep brain stimulation (DBS) electrode. DBS is a treatment for movement disorders where the position of the implant is of prime importance. Positioning challenges during the surgery could be addressed thanks to a magnetic tracking. The system proposed in this paper, complementary to existing procedures, has been designed to bridge preoperative clinical imaging with DBS surgery, allowing the surgeon to increase his/her control on the implantation trajectory. Here the magnetic source required for tracking consists of three coils, and is experimentally mapped. This mapping has been performed with an in-house three-dimensional magnetic camera. The system demonstrates how magnetometers integrated directly at the tip of a DBS electrode, might improve treatment by monitoring the position during and after the surgery. The three-dimensional operation without line of sight has been demonstrated using a reference obtained with magnetic resonance imaging (MRI) of a simplified brain model. We observed experimentally a mean absolute error of 1.35 mm and an Euclidean error of 3.07 mm. Several areas of improvement to target errors below 1 mm are also discussed.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3719
Author(s):  
Aoxin Ni ◽  
Arian Azarang ◽  
Nasser Kehtarnavaz

The interest in contactless or remote heart rate measurement has been steadily growing in healthcare and sports applications. Contactless methods involve the utilization of a video camera and image processing algorithms. Recently, deep learning methods have been used to improve the performance of conventional contactless methods for heart rate measurement. After providing a review of the related literature, a comparison of the deep learning methods whose codes are publicly available is conducted in this paper. The public domain UBFC dataset is used to compare the performance of these deep learning methods for heart rate measurement. The results obtained show that the deep learning method PhysNet generates the best heart rate measurement outcome among these methods, with a mean absolute error value of 2.57 beats per minute and a mean square error value of 7.56 beats per minute.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


2021 ◽  
pp. 1-13
Author(s):  
Richa ◽  
Punam Bedi

Recommender System (RS) is an information filtering approach that helps the overburdened user with information in his decision making process and suggests items which might be interesting to him. While presenting recommendation to the user, accuracy of the presented list is always a concern for the researchers. However, in recent years, the focus has now shifted to include the unexpectedness and novel items in the list along with accuracy of the recommended items. To increase the user acceptance, it is important to provide potentially interesting items which are not so obvious and different from the items that the end user has rated. In this work, we have proposed a model that generates serendipitous item recommendation and also takes care of accuracy as well as the sparsity issues. Literature suggests that there are various components that help to achieve the objective of serendipitous recommendations. In this paper, fuzzy inference based approach is used for the serendipity computation because the definitions of the components overlap. Moreover, to improve the accuracy and sparsity issues in the recommendation process, cross domain and trust based approaches are incorporated. A prototype of the system is developed for the tourism domain and the performance is measured using mean absolute error (MAE), root mean square error (RMSE), unexpectedness, precision, recall and F-measure.


2021 ◽  
pp. 875697282199994
Author(s):  
Joseph F. Hair ◽  
Marko Sarstedt

Most project management research focuses almost exclusively on explanatory analyses. Evaluation of the explanatory power of statistical models is generally based on F-type statistics and the R 2 metric, followed by an assessment of the model parameters (e.g., beta coefficients) in terms of their significance, size, and direction. However, these measures are not indicative of a model’s predictive power, which is central for deriving managerial recommendations. We recommend that project management researchers routinely use additional metrics, such as the mean absolute error or the root mean square error, to accurately quantify their statistical models’ predictive power.


Sign in / Sign up

Export Citation Format

Share Document