scholarly journals 3D Physical Modeling of an Artificial Beach Nourishment: Laboratory Procedures and Nourishment Performance

2021 ◽  
Vol 9 (6) ◽  
pp. 613
Author(s):  
André Guimarães ◽  
Carlos Coelho ◽  
Fernando Veloso-Gomes ◽  
Paulo A. Silva

Beach nourishment represents a type of coastal defense intervention, keeping the beach as a natural coastal defense system. Altering the cross-shore profile geometry, due to the introduction of new sediments, induces a non-equilibrium situation regarding the local wave dynamics. This work aims to increase our knowledge concerning 3D movable bed physical modeling and beach nourishment impacts on the hydrodynamics, sediment transport, and morphodynamics. A set of experiments with an artificial beach nourishment movable bed model was prepared. Hydrodynamic, sediment transport, and morphological variations and impacts due to the presence of the nourishment were monitored with specific equipment. Special attention was given to the number and positioning of the monitoring equipment and the inherent constraints of 3D movable beds laboratory tests. The nourishment induced changes in the beach dynamics, leading to an increase in the flow velocities range and suspended sediment concentration, and effectively increasing the emerged beach width. Predicting and anticipating the morphological evolution of the modeled beach has a major impact on data accuracy, since it might influence the monitoring equipment’s correct position. Laboratory results and constraints were characterized to help better define future laboratory procedures and strategies for increasing movable bed models’ accuracy and performance.

Author(s):  
Yu-Qi Huang ◽  
Jing-Hua Lin ◽  
Ray-Yeng Yang ◽  
Yang-Yih Chen ◽  
Jia-Lin Julie Chen

Studying the process of riverine sediment at mouths and continental shelves is a critical subject for many engineering applications, such as dredging, navigation, dispersal and remobilization of contaminants. Sediment deposits also determine seabed properties, coastal geomorphology, and the health of coastal habitat/ecology. During extreme conditions, episodic river discharge triggered by large rainfall due to tropical cyclones may contribute significant amount of riverine sediment into the ocean. In the past decade, evidence of severe seabed erosion (up to 1m/year) along the sandy coast of Yunlin County has raised concerns regarding the sustainability of coastal structures. The exposed riverine sediment from the Jhuoshuei River is considered as one of major sources for sediment supply in this region. Bottle samples collected from bridge station in the Jhuoshuei River during the passage of tropical cyclones suggest sediment concentration can exceed 40 g/l for the major duration of the storm (Milliman et al. 2007). To mitigate the damage caused by shoreline retreat, 600,000 cubic meters per month of sand has been placed in two specific locations near the offshore industry park. The overarching goal of this study is to clarify the contribution of exposed riverine sediment and beach nourishment to enhance our understanding on the observed sediment transport and morphological evolution.


2018 ◽  
Vol 5 (2) ◽  
pp. 172018 ◽  
Author(s):  
Sergio Maldonado ◽  
Alistair G. L. Borthwick

We derive a two-layer depth-averaged model of sediment transport and morphological evolution for application to bedload-dominated problems. The near-bed transport region is represented by the lower (bedload) layer which has an arbitrarily constant, vanishing thickness (of approx. 10 times the sediment particle diameter), and whose average sediment concentration is free to vary. Sediment is allowed to enter the upper layer, and hence the total load may also be simulated, provided that concentrations of suspended sediment remain low. The model conforms with established theories of bedload, and is validated satisfactorily against empirical expressions for sediment transport rates and the morphodynamic experiment of a migrating mining pit by Lee et al. (1993 J. Hydraul. Eng. 119 , 64–80 ( doi:10.1061/(ASCE)0733-9429(1993)119:1(64) )). Investigation into the effect of a local bed gradient on bedload leads to derivation of an analytical, physically meaningful expression for morphological diffusion induced by a non-zero local bed slope. Incorporation of the proposed morphological diffusion into a conventional morphodynamic model (defined as a coupling between the shallow water equations, Exner equation and an empirical formula for bedload) improves model predictions when applied to the evolution of a mining pit, without the need either to resort to special numerical treatment of the equations or to use additional tuning parameters.


Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 961 ◽  
Author(s):  
Silvia Bosa ◽  
Marco Petti ◽  
Sara Pascolo

River morphological evolution is a challenging topic, involving hydrodynamic flow, sediment transport and bank stability. Lowland rivers are often characterized by the coexistence of granular and cohesive material, with significantly different behaviours. This paper presents a bidimensional morphological model to describe the evolution of the lower course of rivers, where there are both granular and cohesive sediments. The hydrodynamic equations are coupled with two advection–diffusion equations, which consider the transport of granular and cohesive suspended sediment concentration separately. The change of bed height is evaluated as the sum of the contributions of granular and sediment material. A bank failure criterion is developed and incorporated into the numerical simulation of the hydrodynamic flood wave and channel evolution, to describe both bed deformation and bank recession. To this aim, two particular mechanisms are considered: the former being a lateral erosion due to the current flow and consequent cantilever collapse and the latter a geostatic failure due to the submergence. The equation system is integrated by means of a finite volume scheme. The resulting model is applied to the Tagliamento River, in northern Italy, where the meander migration is documented through a sequence of aerial images. The channel evolution is simulated, imposing an equivalent hydrograph consisting of a sequence of flood waves, which represents a medium year, with reference to their effect on sediment transport. The results show that the model adequately describes the general morphological evolution of the meander.


2021 ◽  
Vol 9 (8) ◽  
pp. 851
Author(s):  
Claudia Romagnoli ◽  
Flavia Sistilli ◽  
Luigi Cantelli ◽  
Margherita Aguzzi ◽  
Nunzio De Nigris ◽  
...  

The coastal area at Riccione, in the southern Emilia-Romagna littoral region, is exposed to erosive processes, which are expected to be enhanced by climate change. The beach, mostly composed of fine sand, is maintained through various defense strategies, including frequent nourishment interventions for balancing the sediment deficit and other experimental solutions for reducing coastal erosion. Artificial reshaping of the beach and “common practices” in the sediment management redefine the beach morphology and the sediment redistribution almost continuously. These activities overlap each other and with the coastal dynamics, and this makes it very difficult to evaluate their effectiveness, as well as the role of natural processes on the beach morphological evolution. Topo-bathymetric and sedimentological monitoring of the beach has been carried out on a regular basis since 2000 by the Regional Agency for Prevention, Environment and Energy of Emilia-Romagna (Arpae). Further monitoring of the emerged and submerged beach has been carried out in 2019–2021 in the framework of the research project STIMARE, focusing on innovative strategies for coastal monitoring in relation with erosion risk. The aim of this study is to assess the coastal behavior at the interannual/seasonal scale in the southern coastal stretch of Riccione, where the adopted coastal defense strategies and management actions mostly control the morphological variations in the emerged and submerged beach besides the wave and current regime. The topo-bathymetric variations and erosion/accretion patterns provided by multitemporal monitoring have been related to natural processes and to anthropogenic activities. The morphological variations have been also assessed in volumetric terms in the different subzones of the beach, with the aim of better understanding the onshore/offshore sediment exchange in relation with nourishments and in the presence of protection structures. The effectiveness of the adopted interventions to combat erosion, and to cope with future climate change-related impacts, appears not fully successful in the presence of an overall sediment deficit at the coast. This demonstrates the need for repeated monitoring of the emerged and submerged beach in such a critical setting.


2021 ◽  
Vol 9 (6) ◽  
pp. 600
Author(s):  
Hyun Dong Kim ◽  
Shin-ichi Aoki

When erosion occurs, sand beaches cannot maintain sufficient sand width, foreshore slopes become steeper due to frequent erosion effects, and beaches are trapped in a vicious cycle of vulnerability due to incident waves. Accordingly, beach nourishment can be used as a countermeasure to simultaneously minimize environmental impacts. However, beach nourishment is not a permanent solution and requires periodic renourishment after several years. To address this problem, minimizing the period of renourishment is an economical alternative. In the present study, using the Tuvaluan coast with its cross-sectional gravel nourishment site, four different test cases were selected for the hydraulic model experiment aimed at discovering an effective nourishment strategy to determine effective alternative methods. Numerical simulations were performed to reproduce gravel nourishment; however, none of these models simultaneously simulated the sediment transport of gravel and sand. Thus, an artificial neural network, a deep learning model, was developed using hydraulic model experiments as training datasets to analyze the possibility of simultaneously accomplishing the sediment transport of sand and gravel and supplement the shortcomings of the numerical models.


2021 ◽  
Vol 9 (3) ◽  
pp. 245
Author(s):  
Cuiping Kuang ◽  
Xuejian Han ◽  
Jiabo Zhang ◽  
Qingping Zou ◽  
Boling Dong

Beach nourishment, a common practice to replenish an eroded beach face with filling sand, has become increasingly popular as an environmentally friendly soft engineering measure to tackle coastal erosion. In this study, three 200 m long offshore submerged sandbars were placed about 200 m from the shore in August 2017 for both coastal protection and beach nourishment at Shanhai Pass, Bohai Sea, northeastern China. A series of 21 beach profiles were collected from August 2017 to July 2018 to monitor the morphological changes of the nourished beach. Field observations of wave and tide levels were conducted for one year and tidal current for 25 h, respectively. To investigate the spatial-temporal responses of hydrodynamics, sediment transport, and morphology to the presence of three artificial submerged sandbars, a two-dimensional depth-averaged (2DH) multi-fraction sediment transport and morphological model were coupled with wave and current model and implemented over a spatially varying nested grid. The model results compare well with the field observations of hydrodynamics and morphological changes. The tidal range was around 1.0 m and the waves predominately came from the south-south-east (SSE) direction in the study area. The observed and predicted beach profiles indicate that the sandbars moved onshore and the morphology experienced drastic changes immediately after the introduction of sandbars and reached an equilibrium state in about one year. The morphological change was mainly driven by waves. Under the influences of the prevailing waves and the longshore drift toward the northeast, the coastline on the leeside of the sandbars advanced seaward by 35 m maximally while the rest adjacent coastline retreated severely by 44 m maximally within August 2017–July 2018. The model results demonstrate that the three sandbars have little effect on the tidal current but attenuate the incoming wave significantly. As a result, the medium-coarse sand of sandbars is transported onshore and the background silt is mainly transported offshore and partly in the longshore direction toward the northeast. The 2- and 5-year model simulation results further indicate that shoreline salient may form behind the sandbars and protrude offshore enough to reach the sandbars, similar to the tombolo behind the breakwater.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 106
Author(s):  
Yuhan Yan ◽  
Dehai Song ◽  
Xianwen Bao ◽  
Nan Wang

The Ou River, a medium-sized river in the southeastern China, is examined to study the estuarine turbidity maximum (ETM) response to rapidly varied river discharge, i.e., peak river discharge (PRD). This study analyzes the difference in ETM and sediment transport mechanisms between low-discharge and PRD during neap and spring tides by using the Finite-Volume Community Ocean Model. The three-dimensional model is validated by in-situ measurements from 23 April to 22 May 2007. In the Ou River Estuary (ORE), ETM is generally induced by the convergence between river runoff and density-driven flow. The position of ETM for neap and spring tides is similar, but the suspended sediment concentration during spring tide is stronger than that during neap tide. The sediment source of ETM is mainly derived from the resuspension of the seabed. PRD, compared with low-discharge, can dilute the ETM, but cause more sediment to be resuspended from the seabed. The ETM is more seaward during PRD. After PRD, the larger the peak discharge, the longer the recovery time will be. Moreover, the river sediment supply helps shorten ETM recovery time. Mechanisms for this ETM during a PRD can contribute to studies of morphological evolution and pollutant flushing.


Author(s):  
Davide Bonaldo ◽  
Alvise Benetazzo ◽  
Andrea Bergamasco ◽  
Francesco Falcieri ◽  
Sandro Carniel ◽  
...  

AbstractThe shallow, gently sloping, sandy-silty seabed of the Venetian coast (Italy) is studded by a number of outcropping rocky systems of different size encouraging the development of peculiar zoobenthic biocenoses with considerably higher biodiversity indexes compared to neighbouring areas. In order to protect and enhance the growth of settling communities, artificial monolithic reefs were deployed close to the most important formations, providing further nesting sites and mechanical hindrance to illegal trawl fishing.In this framework, a multi-step and multi-scale numerical modelling activity was carried out to predict the perturbations induced by the presence of artificial structures on sediment transport over the outcroppings and their implications on turbidity and water quality. After having characterized wave and current circulation climate at the sub-basin scale over a reference year, a set of small scale simulations was carried out to describe the effects of a single monolith under different geometries and hydrodynamic forcings, encompassing the conditions likely occurring at the study sites. A dedicated tool was then developed to compose the information contained in the small-scale database into realistic deployment configurations, and applied in four protected outcroppings identified as test sites. With reference to these cases, under current meteomarine climate the application highlighted a small and localised increase in suspended sediment concentration, suggesting that the implemented deployment strategy is not likely to produce harmful effects on turbidity close to the outcroppings.In a broader context, the activity is oriented at the tuning of a flexible instrument for supporting the decision-making process in benthic environments of outstanding environmental relevance, especially in the Integrated Coastal Zone Management or Maritime Spatial Planning applications. The dissemination of sub-basin scale modelling results via the THREDDS Data Server, together with an user-friendly software for composing single-monolith runs and a graphical interface for exploring the available data, significantly improves the quantitative information collection and sharing among scientists, stakeholders and policy-makers.


Ocean Science ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. 673-690 ◽  
Author(s):  
Guilherme Franz ◽  
Matthias T. Delpey ◽  
David Brito ◽  
Lígia Pinto ◽  
Paulo Leitão ◽  
...  

Abstract. Coastal defence structures are often constructed to prevent beach erosion. However, poorly designed structures may cause serious erosion problems in the downdrift direction. Morphological models are useful tools to predict such impacts and assess the efficiency of defence structures for different scenarios. Nevertheless, morphological modelling is still a topic under intense research effort. The processes simulated by a morphological model depend on model complexity. For instance, undertow currents are neglected in coastal area models (2DH), which is a limitation for simulating the evolution of beach profiles for long periods. Model limitations are generally overcome by predefining invariant equilibrium profiles that are allowed to shift offshore or onshore. A more flexible approach is described in this paper, which can be generalised to 3-D models. The present work is based on the coupling of the MOHID modelling system and the SWAN wave model. The impacts of different designs of detached breakwaters and groynes were simulated in a schematic beach configuration following a 2DH approach. The results of bathymetry evolution are in agreement with the patterns found in the literature for several existing structures. The model was also tested in a 3-D test case to simulate the formation of sandbars by undertow currents. The findings of this work confirmed the applicability of the MOHID modelling system to study sediment transport and morphological changes in coastal zones under the combined action of waves and currents. The same modelling methodology was applied to a coastal zone (Costa da Caparica) located at the mouth of a mesotidal estuary (Tagus Estuary, Portugal) to evaluate the hydrodynamics and sediment transport both in calm water conditions and during events of highly energetic waves. The MOHID code is available in the GitHub repository.


Sign in / Sign up

Export Citation Format

Share Document