scholarly journals Intranasal Vaccine Using P10 Peptide Complexed within Chitosan Polymeric Nanoparticles as Experimental Therapy for Paracoccidioidomycosis in Murine Model

2020 ◽  
Vol 6 (3) ◽  
pp. 160
Author(s):  
Samuel Rodrigues Dos Santos Junior ◽  
Francenya Kelley Lopes da Silva ◽  
Lucas Santos Dias ◽  
Ana Camila Oliveira Souza ◽  
Marcelo Valdemir de Araujo ◽  
...  

Paracoccidioidomycosis (PCM) is a granulomatous fungal disease caused by the dimorphic fungal species of Paracoccidioides, which mainly affects the lungs. Modern strategies for the treatment and/or prevention of PCM are based on a Th1-type immune response, which is important for controlling the disease. One of the most studied candidates for a vaccine is the P10 peptide, derived from the 43 kDa glycoprotein of Paracoccidioides brasiliensis. In order to improve its immune modulatory effect, the P10 peptide was associated with a chitosan-conjugated nanoparticle. The nanoparticles presented 220 nm medium size, poly dispersion index (PDI) below 0.5, zeta potential of +20 mV and encapsulation efficiency around 90%. The nanoparticles’ non-toxicity was verified by hemolytic test and cell viability using murine macrophages. The nanoparticles were stable and presented physicochemical characteristics desirable for biological applications, reducing the fungal load and the usual standard concentration of the peptide from 4 to 20 times.

2012 ◽  
Vol 75 (1) ◽  
pp. 104-111 ◽  
Author(s):  
CLEMENCIA CHAVES-LÓPEZ1 ◽  
ANA MARÍA MARTIN-SAacute;NCHEZ ◽  
EVANGÉLICA FUENTES-ZARAGOZA ◽  
MANUEL VIUDA-MARTOS ◽  
JUANA FERNÁNDEZ-LÓPEZ ◽  
...  

Oregano essential oil (OEO) was evaluated to determine its effect on the growth of natural contaminating molds on the surface of Spanish fermented sausage, the development of the internal microbial population of the sausage, and the physicochemical properties of the sausage. Results indicated a dramatic reduction in the contaminant molds. At the end of ripening, the main endogenous fungal species in control samples were Mucor racemosus (55%), Aspergillus fumigatus (20.6%), Cladosporium sphaerospermum (11.1%), Acremonium strictum (7.9%), and Aspergillus niger (4.7%). In samples treated with OEO, M. racemosus and A. fumigatus were the only species isolated; the treatment was more effective against A. fumigatus than against M. racemosus. The use of OEO to inhibit surface fungi did not affect the sausage drying process, pH, water activity, or color changes during ripening. These parameters change in a typical pattern for fermented dry-cured sausages during ripening. At the end of ripening, OEO-treated sausages had lower hardness and greater chewiness than the control but showed similar textural properties to sausages treated with potassium sorbate.


2020 ◽  
Vol 10 (3) ◽  
pp. 582-593 ◽  
Author(s):  
Carla B. Roces ◽  
Dennis Christensen ◽  
Yvonne Perrie

AbstractIn the formulation of nanoparticles, poly(lactic-co-glycolic acid) (PLGA) is commonly employed due to its Food and Drug Administration and European Medicines Agency approval for human use, its ability to encapsulate a variety of moieties, its biocompatibility and biodegradability and its ability to offer a range of controlled release profiles. Common methods for the production of PLGA particles often adopt harsh solvents, surfactants/stabilisers and in general are multi-step and time-consuming processes. This limits the translation of these drug delivery systems from bench to bedside. To address this, we have applied microfluidic processes to develop a scale-independent platform for the manufacture, purification and monitoring of nanoparticles. Thereby, the influence of various microfluidic parameters on the physicochemical characteristics of the empty and the protein-loaded PLGA particles was evaluated in combination with the copolymer employed (PLGA 85:15, 75:25 or 50:50) and the type of protein loaded. Using this rapid production process, emulsifying/stabilising agents (such as polyvinyl alcohol) are not required. We also incorporate in-line purification systems and at-line particle size monitoring. Our results demonstrate the microfluidic control parameters that can be adopted to control particle size and the impact of PLGA copolymer type on the characteristics of the produced particles. With these nanoparticles, protein encapsulation efficiency varies from 8 to 50% and is controlled by the copolymer of choice and the production parameters employed; higher flow rates, combined with medium flow rate ratios (3:1), should be adopted to promote higher protein loading (% wt/wt). In conclusion, herein, we outline the process controls for the fabrication of PLGA polymeric nanoparticles incorporating proteins in a rapid and scalable manufacturing process.


Author(s):  
Williams, Janet Olufunmilayo ◽  
Owhorji, Gloria

Aim: To determine the fungal population and physicochemistry of abattoir impacted soil in Iwofe, Rivers State. Study Design: This study focused on Abattoir impacted soil. Statistical analysis of data and interpretation was carried out. Place and Duration of Study: Abattoir impacted soil was collected from three points in an abattoir located in Iwofe, Rivers State while the unpolluted soil which served as control was collected from the Rivers State University, Port Harcourt in January, 2021. Methodology: Standard microbiological techniques were used: the fungal population was determined by inoculating aliquots of an appropriate dilution resulting from a ten-fold serial dilution on prepared Sabouraud dextrose agar plates in duplicates. Plates were later incubated for 3-5 days after which colonies were enumerated and used in obtaining the fungal population in the soil samples while distinct colonies were subcultured for macroscopic and microscopic identification of fungi. The physicochemical parameters and heavy metals were analyzed using standard methods. Results: Fungal load in the control and abattoir impacted soil were 1.09×105 and 3.9×104 CFU/g, respectively. The fungal load of the control soil was significantly higher (P˂0.05) than the abattoir impacted soil. The fungal isolates identified in the abattoir impacted soil were Microsporium sp, Aspergillus niger and Candida sp while Aspergillus niger, Aspergillus flavus, Fusarium sp, Penicillium sp, Mucor sp and Rhizopus sp were identified from the control soil. The pH, temperature, nitrate and phosphate of the abattoir soil were 6.7, 28.33℃, 27.83(mgKg-1) and 1055(mgKg-1), respectively. The concentrations of Cadmium, Iron and Lead in the abattoir Impacted soil and control soil were 0.81, 563.35 and 7.12 mgKg-1, 0.51, 582.0 and 3.18 mgKg-1, respectively. The physico chemistry and heavy metals in the abattoir soil were within acceptable limits. Discussion and Conclusion: The findings from this study showed that heavy metals in abattoir impacted soil had an impact in the fungal population which led to the isolation of only three fungal isolates belonging to Microsporium sp, Candida sp and Aspergillus niger. More so, despite the presence of heavy metals in the abattoir impacted soil, the metals were all within permissible limits. Thus, the abattoir impacted soil was not heavily polluted.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 353
Author(s):  
Ilianna Vrouvaki ◽  
Eleni Koutra ◽  
Michael Kornaros ◽  
Konstantinos Avgoustakis ◽  
Fotini N. Lamari ◽  
...  

Polymeric nanoparticles (NPs) encapsulating Pistacia lentiscus L. var. chia essential oil (EO) were prepared by a solvent evaporation method, in order to obtain a novel carrier for administration on the skin. The specific EO exhibits antimicrobial and anti-inflammatory properties thus stimulating considerable interest as a novel agent for the treatment of minor skin inflammations. The incorporation into nanoparticles could overcome the administration limitations that inserts the nature of the EO. Nanoparticles were prepared, utilizing poly(lactic acid) (PLA) as shell material, due to its biocompatibility and biodegradability, while the influence of surfactant type on NPs properties was examined. Two surfactants were selected, namely poly(vinyl alcohol) (PVA) and lecithin (LEC) and NPs’ physicochemical characteristics i.e. size, polydispersity index (PdI) and ζ-potential were determined, not indicating significant differences (p > 0.05) between PLA/PVA-NPs (239.9 nm, 0.081, -29.1 mV) and PLA/LEC-NPs (286.1 nm, 0.167, −34.5 mV). However, encapsulation efficiency (%EE) measured by GC-MS, was clearly higher for PLA/PVA-NPs than PLA/LEC-NPs (37.45% vs. 9.15%, respectively). Moreover PLA/PVA-NPs remained stable over a period of 60 days. The in vitro release study indicated gradual release of the EO from PLA/PVA-NPs and more immediate from PLA/LEC-NPs. The above findings, in addition to the SEM images of the particles propose a potential structure of nanocapsules for PLA/PVA-NPs, where shell material is mainly consisted of PLA, enclosing the EO in the core. However, this does not seem to be the case for PLA/LEC-NPs, as the results indicated low EO content, rapid release and a considerable percentage of humidity detected by SEM. Furthermore, the Minimum Inhibitory Concentration (MIC) of the EO was determined against Escherichia coli and Bacillus subtilis, while NPs, however did not exhibit considerable activity in the concentration range applied. In conclusion, the surfactant selection may modify the release of EO incorporated in NPs for topical application allowing its action without interfering to the physiological skin microbiota.


2000 ◽  
Vol 68 (1) ◽  
pp. 352-359 ◽  
Author(s):  
Luz E. Cano ◽  
Lúcia M. Singer-Vermes ◽  
Tania A. Costa ◽  
José O. Mengel ◽  
Cynthia F. Xidieh ◽  
...  

ABSTRACT Using a pulmonary model of infection, we demonstrated previously that A/Sn and B10.A mice are, respectively, resistant and susceptible to Paracoccidioides brasiliensis infection. Employing the same experimental model, we examined herein the role of CD8+ T cells in the course of paracoccidioidomycosis. Treatment with anti-CD8 monoclonal antibodies caused a selective depletion of pulmonary and splenic CD8+ T cells in both mouse strains. The number of pulmonary CD4+ T cells and immunoglobulin-positive cells was independent of the number of CD8+ T cells. In susceptible mice, the loss of CD8+ T cells by in vivo treatment with anti-CD8 monoclonal antibodies impaired the clearance of yeasts from the lungs and increased the fungal dissemination to the liver and spleen. The same treatment in resistant mice increased fungal dissemination to extrapulmonary tissues but did not alter the pulmonary fungal load. Furthermore, CD8+ T-cell depletion did not modify delayed-type hypersensitivity reactions of A/Sn mice but increased these reactions in B10.A mice. The production of P. brasiliensis-specific antibodies by resistant and susceptible mice depleted of CD8+ T cells was similar to that of mice given control antibody. Histopathologically, depletion of CD8+ T cells did not disorganize the focal granulomatous lesions developed by both mouse strains. These results indicate that CD8+ T cells are necessary for optimal clearance of the fungus from tissues of mice infected with P. brasiliensisand demonstrate more prominent protective activity by those cells in the immune responses mounted by susceptible animals.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Paula Andrea Pino-Tamayo ◽  
Juan David Puerta-Arias ◽  
Damaris Lopera ◽  
Martha Eugenia Urán-Jiménez ◽  
Ángel González

Neutrophils predominate during the acute phase of theParacoccidioides brasiliensisinfection. Herein, we determined the role of the neutrophil during the early stages of experimental pulmonary paracoccidioidomycosis using a monoclonal antibody (mAb) specific for neutrophils. Male BALB/c mice were inoculated intranasally with1.5×106or2×106P. brasiliensisyeast cells. The mAb was administered 24 h before infection, followed by doses every 48 h until mice were sacrificed. Survival time was evaluated and mice were sacrificed at 48 h and 96 h after inoculation to assess cellularity, fungal load, cytokine/chemokine levels, and histopathological analysis. Neutrophils from mAb-treated mice were efficiently depleted (99.04%). Eighty percent of the mice treated with the mAb and infected with1.5×106yeast cells died during the first two weeks after infection. When mice were treated and infected with2×106yeast cells, 100% of them succumbed by the first week after infection. During the acute inflammatory response significant increases in numbers of eosinophils, fungal load and levels of proinflammatory cytokines/chemokines were observed in the mAb-treated mice. We also confirmed that neutrophils are an important source of IFN-γand IL-17. These results indicate that neutrophils are essential for protection as well as being important for regulating the early inflammatory immune response in experimental pulmonary paracoccidioidomycosis.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sushil Sharma ◽  
Madhu Gupta ◽  
Rekha Bhadauria

Sixty samples, categorized on the basis of manufacturers, were analyzed during the study. A total of 16 fungal species, belonging to 7 different genera, were isolated from the collected samples. Aspergillus was recorded as the most dominant genus with 9 species, namely, A. niger, A. carbonarius, A. luchuensis, A. fumigatus, A. flavus, A. nidulans, A. terreus, A. ochraceous, and A. wentii. A. niger was the most predominant species with frequency of occurrence of 63.33%. A large variation in fungal load and diversity was observed among the samples of different manufacturing categories. The percent moisture content and pH of samples were directly related to the extent of contamination. Samples with low pH and high moisture content were more contaminated. The higher incidence of A. niger (74.36%) was observed among the triphala powder of all manufacturing categories. Detection of ochratoxin producing fungi in triphala powder may pose a serious risk of ochratoxin production. Thus, there is an urgent need to enforce quality standards and regulation to minimize the fungal contamination to the globally expectable limit.


Microbiology ◽  
2005 ◽  
Vol 151 (7) ◽  
pp. 2233-2240 ◽  
Author(s):  
Robert Zarnowski ◽  
Jon P. Woods

In this study, extracellular glutathione-dependent ferric reductase (GSH-FeR) activities in different dimorphic zoopathogenic fungal species were characterized. Supernatants from Blastomyces dermatitidis, Histoplasma capsulatum, Paracoccidioides brasiliensis and Sporothrix schenckii strains grown in their yeast form were able to reduce iron enzymically with glutathione as a cofactor. Some variations in the level of reduction were noted amongst the strains. This activity was stable in acidic, neutral and slightly alkaline environments and was inhibited when trivalent aluminium and gallium ions were present. Using zymography, single bands of GSH-FeRs with apparent molecular masses varying from 430 to 460 kDa were identified in all strains. The same molecular mass range was determined by size exclusion chromatography. These data demonstrate that dimorphic zoopathogenic fungi produce and secrete a family of similar GSH-FeRs that may be involved in the acquisition and utilization of iron. Siderophore production by these and other fungi has sometimes been considered to provide a full explanation of iron acquisition in these organisms. Our work reveals an additional common mechanism that may be biologically and pathogenically important. Furthermore, while some characteristics of these enzymes such as extracellular location, cofactor utilization and large size are not individually unique, when considered together and shared across a range of fungi, they represent an important novel physiological feature.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Keiichi Ueda ◽  
Ayako Sano ◽  
Jyoji Yamate ◽  
Eiko Itano Nakagawa ◽  
Mitsuru Kuwamura ◽  
...  

Lacaziosis, formerly called lobomycosis, caused byLacazia loboi, is a zoonotic mycosis found in humans and dolphins and is endemic in the countries on the Atlantic Ocean. Although the Japanese coast is not considered an endemic area, photographic records of lacaziosis-like skin lesions were found in bottlenose dolphins (Tursiops truncatus) that were migrating in the Goto Islands (Nagasaki Prefecture, Japan). We diagnosed 2 cases of lacaziosis in bottlenose dolphins captured simultaneously at the same coast within Japanese territory on the basis of clinical characteristics, cytology, histopathology, immunological tests, and detection of partial sequences of a 43 kDa glycoprotein coding gene (gp43) with a nested-PCR system. The granulomatous skin lesions from the present cases were similar to those found in animals from endemic areas, containing multiple budding and chains of round yeast cells and positive in the immune-staining with anti-Paracoccidioides brasiliensisserum which is a fungal species related toL. loboi; however, thegp43gene sequences derived from the present cases showed 94.1% homology toP. brasiliensisand 84.1% toL. loboi. We confirmed that the causative agent at the present cases was different genotype ofL. loboifrom Amazon area.


2020 ◽  
pp. 93-99

In Pakistan, wheat flour is mostly utilized for making flat breads locally called chapattis. Other uses of wheat flour are in bakery products manufacturing. It is an important constituent of daily diet of people. Shelf life of wheat flour is one of the most important factors for its quality determination. Wheat flour is often tainted with pathogenic fungal species and their toxic secondary metabolites called Mycotoxins. The present study was designed to make a comparative analysis of Microbiological quality (fungal load and total coliform count) and detection of aflatoxins in raw and branded whole wheat flour samples of Lahore Metropolitan city. Total 100 samples were collected for determination of fungal load, coliform and aflatoxins. The Standardized methods were applied to count the colony forming units of fungal species and total coliform bacteria respectively. The results indicated both branded and raw whole wheat flour groups were of good quality for human consumption. However, the microbiological quality of branded whole flour was better than raw whole wheat flour. There was a significant difference (P<0.05) in fungal load of raw and branded whole wheat flour. Similarly, coliform bacteria were only cultured form the samples of raw flour. In the last stage of study, aflatoxins level was analysed by using a commercially available kit. All the samples of both raw and branded whole wheat flours were negative for aflatoxins detection. The overall quality of raw and branded whole wheat flours in Lahore city is satisfactory for consumers.


Sign in / Sign up

Export Citation Format

Share Document