scholarly journals White-Nose Syndrome Confirmed in Italy: A Preliminary Assessment of Its Occurrence in Bat Species

2021 ◽  
Vol 7 (3) ◽  
pp. 192
Author(s):  
Laura Garzoli ◽  
Elena Bozzetta ◽  
Katia Varello ◽  
Andrea Cappelleri ◽  
Elena Patriarca ◽  
...  

Although no mass mortality has been recorded so far, the precise demographic effect of white-nose syndrome (WNS) on European bats still remains to be ascertained. Following the first isolation of P. destructans in Italy, further surveys were performed to assess the distribution of the fungus in NW Italy and its effects on bats. Data were collected from March 2019 to April 2020 at sites used for hibernation (six sites) and/or for reproduction (four sites) in Piedmont and Aosta Valley. A total of 138 bats, belonging to 10 species, were examined to identify clinical features possibly related to the fungal presence. Culture from swabs and the molecular identification of isolates confirmed the presence of P. destructans in bats from five sites, including two maternal roosts. Dermal fungal infiltration, the criterion to assess the presence of WNS, was observed in biopsies of bats belonging to Myotis blythii, M. daubentonii, M. emarginatus and M. myotis. This is the first report of the disease in Italy. The results suggest a greater susceptibility to the infection of the genus Myotis and particularly of M. emarginatus, possibly due to the long length of its hibernation period. Other fungal dermatophytes were also observed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ammarah Hami ◽  
Rovidha S. Rasool ◽  
Nisar A. Khan ◽  
Sheikh Mansoor ◽  
Mudasir A. Mir ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Guihong Xiong ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Blueberry (Vaccinium virgatum), an economically important small fruit crop, is characterized by its highly nutritive compounds and high content and wide diversity of bioactive compounds (Miller et al. 2019). In September 2020, an unknown leaf blight disease was observed on Rabbiteye blueberry at the Agricultural Science and Technology Park of Jiangxi Agricultural University in Nanchang, China (28°45'51"N, 115°50'52"E). Disease surveys were conducted at that time, the results showed that disease incidence was 90% from a sampled population of 100 plants in the field, and this disease had not been found at other cultivation fields in Nanchang. Leaf blight disease on blueberry caused the leaves to shrivel and curl, or even fall off, which hindered floral bud development and subsequent yield potential. Symptoms of the disease initially appeared as irregular brown spots (1 to 7 mm in diameter) on the leaves, subsequently coalescing to form large irregular taupe lesions (4 to 15 mm in diameter) which became curly. As the disease progressed, irregular grey-brown and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath and finally caused dieback and even shoot blight. To identify the causal agent, 15 small pieces (5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface-sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water, and then incubated on potato dextrose agar (PDA) at 28°C for 5-7 days in darkness. Five fungal isolates showing similar morphological characteristics were obtained as pure cultures by single-spore isolation. All fungal colonies on PDA were white with sparse creeping hyphae. Pycnidia were spherical, light brown, and produced numerous conidia. Conidia were 10.60 to 20.12 × 1.98 to 3.11 µm (average 15.27 × 2.52 µm, n = 100), fusiform, sickle-shaped, light brown, without septa. Based on morphological characteristics, the fungal isolates were suspected to be Coniella castaneicola (Cui 2015). To further confirm the identity of this putative pathogen, two representative isolates LGZ2 and LGZ3 were selected for molecular identification. The internal transcribed spacer region (ITS) and large subunit (LSU) were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004) and LROR/LR7 (Castlebury and Rossman 2002). The sequences of ITS region (GenBank accession nos. MW672530 and MW856809) showed 100% identity with accessions numbers KF564280 (576/576 bp), MW208111 (544/544 bp), MW208112 (544/544 bp) of C. castaneicola. LSU gene sequences (GenBank accession nos. MW856810 to 11) was 99.85% (1324/1326 bp, 1329/1331 bp) identical to the sequences of C. castaneicola (KY473971, KR232683 to 84). Pathogenicity was tested on three blueberry varieties (‘Rabbiteye’, ‘Double Peak’ and ‘Pink Lemonade’), and four healthy young leaves of a potted blueberry of each variety with and without injury were inoculated with 20 μl suspension of prepared spores (106 conidia/mL) derived from 7-day-old cultures of LGZ2, respectively. In addition, four leaves of each variety with and without injury were sprayed with sterile distilled water as a control, respectively. The experiment was repeated three times, and all plants were incubated in a growth chamber (a 12h light and 12h dark period, 25°C, RH greater than 80%). After 4 days, all the inoculated leaves started showing disease symptoms (large irregular grey-brown lesions) as those observed in the field and there was no difference in severity recorded between the blueberry varieties, whereas the control leaves showed no symptoms. The fungus was reisolated from the inoculated leaves and confirmed as C. castaneicola by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. castaneicola causing leaf blight on blueberries in China. The discovery of this new disease and the identification of the pathogen will provide useful information for developing effective control strategies, reducing economic losses in blueberry production, and promoting the development of the blueberry industry.


Genetika ◽  
2014 ◽  
Vol 46 (2) ◽  
pp. 353-368 ◽  
Author(s):  
Ivan Milenkovic ◽  
Justyna Nowakowska ◽  
Tomasz Oszako ◽  
Katarina Mladenovic ◽  
Aleksandar Lucic ◽  
...  

The paper presents the results of the study performed with aims to determine the presence and diversity of Phytophthora species on maple trees in Serbia. Due to high aggressiveness and their multicyclic nature, presence of these pathogens is posing significant threat to forestry and biodiversity. In total, 29 samples of water, soil and tissues were taken from 10 different localities, and six different maple hosts were tested. After the isolation tests, 17 samples from five different maple hosts were positive for the presence of Phytophthora spp., and 31 isolates were obtained. After the detailed morphological and physiological classification, four distinct groups of isolates were separated. DNA was extracted from selected representative isolates and molecular identification with sequencing of ITS region was performed. Used ITS4 and ITS6 primers successfully amplified the genomic DNA of chosen isolates and morphological identification of obtained isolates was confirmed after the sequencing. Four different Phytophthora species were detected, including P. cactorum, P. gonapodyides, P. plurivora and P. lacustris. The most common isolated species was homothallic, and with very variable and semipapillate sporangia, P. plurivora with 22 obtained isolates. This is the first report of P. plurivora and P. gonapodyides on A. campestre, P. plurivora and P. lacustris on Acer heldreichii and first report of P. lacustris on A. pseudoplatanus and A. tataricum in Serbia.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Tongke Liu ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Sweet potato [Ipomoea batatas (L.) Lam], is an extremely versatile vegetable that possesses high nutritional values. It is also a valuable medicinal plant having anti-cancer, antidiabetic, and anti-inflammatory activities. In July 2020, leaf spot was observed on leaves of sweet potato in Nanchang, China (28°45'51"N, 115°50'52"E), which affected the growth and development of the crop and caused tuberous roots yield losses of 25%. The disease incidence (total number of diseased plants / total number of surveyed plants × 100%) was 57% from a sampled population of 100 plants in the field. Symptomatic plants initially exhibited small, light brown, irregular-shaped spots on the leaves, subsequently coalescing to form large irregular brown lesions and some lesions finally fell off. Fifteen small pieces (each 5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water and incubated on potato dextrose agar (PDA) plates at 28°C in darkness. A total of seven fungal isolates with similar morphological characteristics were obtained as pure cultures by single-spore isolation. After 5 days of cultivation at 28°C, dark brown or blackish green colonies were observed, which developed brown, thick-walled, simple, or branched, and septate conidiophores. Conidia were 18.28 to 24.91 × 7.46 to 11.69 µm (average 21.27 × 9.48 µm, n = 100) in size, straight or slightly curved, middle cell unequally enlarged, brown to dark brown, apical, and basal cells slightly paler than the middle cells, with three septa. Based on morphological characteristics, the fungal isolates were suspected to be Curvularia plantarum (Raza et al. 2019). To further confirm the identification, three isolates (LGZ1, LGZ4 and LGZ5) were selected for molecular identification. The internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and translation elongation factor 1-alpha (EF1-α) genes were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004), gpd1/gpd2 (Berbee et al. 1999), EF-983F/EF-2218R (Rehner and Buckley 2005), respectively. The sequences of ITS region of the three isolates (accession nos. MW581905, MZ209268, and MZ227555) shared 100% identity with those of C. plantarum (accession nos. MT410571-72, MN044754-55). Their GAPDH gene sequences were identical (accession nos. MZ224017-19) and shared 100% identity with C. plantarum (accession nos. MN264120, MT432926, and MN053037-38). Similarly, EF1-α gene sequences were identical (accession nos. MZ224020-22) and had 100% identity with C. plantarum (accession nos. MT628901, MN263982-83). A maximum likelihood phylogenetic tree was built based on concatenated data from the sequences of ITS, GAPDH, and EF-1α by using MEGA 5. The three isolates LGZ1, LGZ4, and LGZ5 clustered with C. plantarum. The fungus was identified as C. plantarum by combining morphological and molecular characteristics. Pathogenicity tests were conducted by inoculating a conidial suspension (106 conidia/ml) on three healthy potted I. batatas plants (five leaves wounded with sterile needle of each potted plant were inoculated). In addition, fifteen wounded leaves of three potted plants were sprayed with sterile distilled water as a control. All plants were maintained in a climate box (12 h light/dark) at 25°C with 80% relative humidity. All the inoculated leaves started showing light brown flecks after 7 days, whereas the control leaves showed no symptoms. The pathogenicity test was conducted three times. The fungus was reisolated from all infected leaves of potted plants and confirmed as C. plantarum by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. plantarum causing leaf spot on sweet potato in China. The discovery of this new disease and the identification of the pathogen will contribute to the disease management, provide useful information for reducing economic losses caused by C. plantarum, and lay a foundation for the further research of resistance breeding.


2016 ◽  
Vol 44 (2) ◽  
pp. 411-417 ◽  
Author(s):  
Snežana PAVLOVIC ◽  
Danijela RISTIC ◽  
Ivan VUCUROVIC ◽  
Miloš STEVANOVIC ◽  
Saša STOJANOVIC ◽  
...  

Anise (Pimpinella anisum L.) is an important medicinal spice plant that belongs to the family Apiaceae. Anise seeds are rich in essential oils and this is a reason why anise production in Serbia has increased over the last decade. During a routine health inspection on anise seeds collected from three localities in the province of Vojvodina (Mošorin, Veliki Radinci and Ostojićevo) during 2012 and 2013, it was found out that Fusarium spp. were a commonly observed fungi. The presence of Fusarium fungion the seed samples ranged from 3.75-13.75%. The aim of this study was to isolate and identify the strains of Fusarium species present on anise seed samples as it is necessary that commercially used anise seeds are completely free of Fusarium. Based on morphological, microscopic characteristics and a molecular identification by sequencing of TEF gene, the presence of the following species was confirmed on the anise seeds: F. tricinctum, F. proliferatum, F. equiseti, F. oxysporum, F. sporotrichoides, F. incarnatum and F. verticillioides. According to our knowledge and research, this is the first report of F. tricinctum and F. sporotrichoides as pathogens on anise seeds in the world. All seven isolates of Fusarium species are pathogenic to the anise seedlings, while the most virulent species were F. oxysporum, F. tricinctum and F. incarnatum.


2014 ◽  
Vol 9 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Konrad Sachanowicz ◽  
Arkadiusz Stępień ◽  
Mateusz Ciechanowski

AbstractPseudogymnoascus destructans (Pd), a parasitic fungus (being responsible for a disease known as white-nose syndrome, WNS) that caused mass mortality of cave-dwelling, hibernating bats in North America, appears to be native of Europe, where it also occurs on wintering bats, but no similar outbreaks of WNS have been recorded. Herein, we provide the first account on prevalence and phenology of P. destructans in Poland. Bats were counted once per month, from October or January to May (2010-2013), in an abandoned ore mine in southern Poland. Presence of P. destructans in two samples was confirmed by sequencing of isolated fungal DNA. Observations of phenotypically identical mycosis on bats hibernating at this site in March 2006 are likely to be the first known records of P. destructans from Poland. All Pd-suspected individuals were Myotis myotis with an exception of one Myotis daubentonii. The first Pd-suspected bats were noted in mid-February, but their number was the highest in March, what overlapped with maximum numbers of hibernating M. myotis. The prevalence in March was 7%–27% of M. myotis individuals. No mass mortality of bats was observed in the mine, with only three dead individuals found in the hibernaculum which hosted up to 130 bats, representing 6–7 species.


2018 ◽  
Vol 42 (4) ◽  
pp. 286-289 ◽  
Author(s):  
Gulten Emek Tuna ◽  
◽  
Serkan Bakirci ◽  
Ceren Dinler ◽  
Gizem Battal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document