scholarly journals MoGLN2 Is Important for Vegetative Growth, Conidiogenesis, Maintenance of Cell Wall Integrity and Pathogenesis of Magnaporthe oryzae

2021 ◽  
Vol 7 (6) ◽  
pp. 463
Author(s):  
Osakina Aron ◽  
Min Wang ◽  
Lianyu Lin ◽  
Wajjiha Batool ◽  
Birong Lin ◽  
...  

Glutamine is a non-essential amino acid that acts as a principal source of nitrogen and nucleic acid biosynthesis in living organisms. In Saccharomyces cerevisiae, glutamine synthetase catalyzes the synthesis of glutamine. To determine the role of glutamine synthetase in the development and pathogenicity of plant fungal pathogens, we used S. cerevisiae Gln1 amino acid sequence to identify its orthologs in Magnaporthe oryzae and named them MoGln1, MoGln2, and MoGln3. Deletion of MoGLN1 and MoGLN3 showed that they are not involved in the development and pathogenesis of M. oryzae. Conversely, ∆Mogln2 was reduced in vegetative growth, experienced attenuated growth on Minimal Medium (MM), and exhibited hyphal autolysis on oatmeal and straw decoction and corn media. Exogenous l-glutamine rescued the growth of ∆Mogln2 on MM. The ∆Mogln2 mutant failed to produce spores and was nonpathogenic on barley leaves, as it was unable to form an appressorium-like structure from its hyphal tips. Furthermore, deletion of MoGLN2 altered the fungal cell wall integrity, with the ∆Mogln2 mutant being hypersensitive to H2O2. MoGln1, MoGln2, and MoGln3 are located in the cytoplasm. Taken together, our results shows that MoGLN2 is important for vegetative growth, conidiation, appressorium formation, maintenance of cell wall integrity, oxidative stress tolerance and pathogenesis of M. oryzae.

2020 ◽  
Author(s):  
Ning Liu ◽  
Linlu Qi ◽  
Manna Huang ◽  
Deng Chen ◽  
Changfa Yin ◽  
...  

AbstractPlant fungal pathogens secrete numerous proteins into the apoplast at the plant–fungus contact sites to facilitate colonization. Only a few secreted proteins were functionally characterized in Magnaporthe oryzae, the fungal pathogen causing rice blast disease worldwide. ALG3 is an α-1, 3-mannosyltransferase function in N-glycan synthesis for secreted N-glycosylated proteins, and the Δalg3 mutants show strong defects in cell wall integrity and fungal virulence, indicating a potential effect on the secretion of multiple proteins. In this study, we compared the secretome of wild type and Δalg3 mutants, and identified 51 proteins that require ALG3 for proper secretion. These are predicted to be involved in metabolic processes, interspecies interactions, cell wall organization, and response to chemicals. The tested secreted proteins localized at the apoplast region surrounding the fungal infection hyphae. Moreover, the N-glycosylation of candidate proteins was significantly changed in the Δalg3 mutant, leading to the reduction of protein secretion and abnormal protein localization. Furthermore, we tested the function of two genes, one is a previously reported M. oryzae gene Invertase 1 (INV1) encoding a secreted invertase, and the other one is a gene encoding an Acid mammalian chinitase (AMCase). The fungal virulence was significantly reduced and the cell wall integrity was altered in the Δinv1 and Δamcase mutant strains. Elucidation of the comparative secretome of M. oryzae improves our understanding of the proteins that require ALG3 for secretion, and of their function in fungal virulence and cell wall integrity.


2021 ◽  
Vol 17 (1) ◽  
pp. e1009080
Author(s):  
Wanzhen Feng ◽  
Ziyi Yin ◽  
Haowen Wu ◽  
Peng Liu ◽  
Xinyu Liu ◽  
...  

The fungal cell wall plays an essential role in maintaining cell morphology, transmitting external signals, controlling cell growth, and even virulence. Relaxation and irreversible stretching of the cell wall are the prerequisites of cell division and development, but they also inevitably cause cell wall stress. Both Mitotic Exit Network (MEN) and Cell Wall Integrity (CWI) are signaling pathways that govern cell division and cell stress response, respectively, how these pathways cross talk to govern and coordinate cellular growth, development, and pathogenicity remains not fully understood. We have identified MoSep1, MoDbf2, and MoMob1 as the conserved components of MEN from the rice blast fungus Magnaporthe oryzae. We have found that blocking cell division results in abnormal CWI signaling. In addition, we discovered that MoSep1 targets MoMkk1, a conserved key MAP kinase of the CWI pathway, through protein phosphorylation that promotes CWI signaling. Moreover, we provided evidence demonstrating that MoSep1-dependent MoMkk1 phosphorylation is essential for balancing cell division with CWI that maintains the dynamic stability required for virulence of the blast fungus.


2021 ◽  
Vol 7 (12) ◽  
pp. 1023
Author(s):  
Xingchen Song ◽  
Qijun Zhao ◽  
Aiai Zhou ◽  
Xiaodong Wen ◽  
Ming Li ◽  
...  

The natural product citral has previously been demonstrated to possess antifungal activity against Magnaporthe oryzae. The purpose of this study was to screen and annotate genes that were differentially expressed (DEGs) in M. oryzae after treatment with citral using RNA sequencing (RNA-seq). Thereafter, samples were reprepared for quantitative real-time PCR (RT-qPCR) analysis verification of RNA-seq data. The results showed that 649 DEGs in M. oryzae were significantly affected after treatment with citral (100 μg/mL) for 24 h. Kyoto Encyclopedia of Genes and Genomes (KEGG) and a gene ontology (GO) analysis showed that DEGs were mainly enriched in amino sugar and nucleotide sugar metabolic pathways, including the chitin synthesis pathway and UDP sugar synthesis pathway. The results of the RT-qPCR analysis also showed that the chitin present in M. oryzae might be degraded to chitosan, chitobiose, N-acetyl-D-glucosamine, and β-D-fructose-6-phosphate following treatment with citral. Chitin degradation was indicated by damaged cell-wall integrity. Moreover, the UDP glucose synthesis pathway was involved in glycolysis and gluconeogenesis, providing precursors for the synthesis of polysaccharides. Galactose-1-phosphate uridylyltransferase, which is involved in the regulation of UDP-α-D-galactose and α-D-galactose-1-phosphate, was downregulated. This would result in the inhibition of UDP glucose (UDP-Glc) synthesis, a reduction in cell-wall glucan content, and the destruction of cell-wall integrity.


Open Biology ◽  
2013 ◽  
Vol 3 (9) ◽  
pp. 130022 ◽  
Author(s):  
Alexander Striebeck ◽  
David A. Robinson ◽  
Alexander W. Schüttelkopf ◽  
Daan M. F. van Aalten

The fungal cell possesses an essential carbohydrate cell wall. The outer layer, mannan, is formed by mannoproteins carrying highly mannosylated O - and N -linked glycans. Yeast mannan biosynthesis is initiated by a Golgi-located complex (M-Pol I) of two GT-62 mannosyltransferases, Mnn9p and Van1p, that are conserved in fungal pathogens. Saccharomyces cerevisiae and Candida albicans mnn9 knockouts show an aberrant cell wall and increased antibiotic sensitivity, suggesting the enzyme is a potential drug target. Here, we present the structure of Sc Mnn9 in complex with GDP and Mn 2+ , defining the fold and catalytic machinery of the GT-62 family. Compared with distantly related GT-78/GT-15 enzymes, Sc Mnn9 carries an unusual extension. Using a novel enzyme assay and site-directed mutagenesis, we identify conserved amino acids essential for Sc Mnn9 ‘priming’ α-1,6-mannosyltransferase activity. Strikingly, both the presence of the Sc Mnn9 protein and its product, but not Sc Mnn9 catalytic activity, are required to activate subsequent Sc Van1 processive α-1,6-mannosyltransferase activity in the M-Pol I complex. These results reveal the molecular basis of mannan synthesis and will aid development of inhibitors targeting this process.


2002 ◽  
Vol 15 (10) ◽  
pp. 1031-1039 ◽  
Author(s):  
Reza Zareie ◽  
Dara L. Melanson ◽  
Peter J. Murphy

Proteins with antifungal activity towards Rhynchosporium secalis conidia were isolated from the intercellular washing fluid (IWF) of barley leaves. The active components were purified by high-performance liquid chromatography under conditions that maintained biological activity. Five major barley IWF proteins deleterious to the cell wall of viable R. secalis conidia were isolated and identified by a combination of N-terminal amino acid sequencing, peptide mapping, and determination of mass and isoelectric point. They were a 32-kDa β-1,3-glucanase (Pr32), a 25-kDa chitinase (Pr25), and three 22-kDa thaumatin-like (TL) proteins (Pr22-1, Pr22-2, and Pr22-3). Pr22-1 and Pr22-2 were similar to the protein R class of TL proteins, whereas Pr22-3 was more similar to the S class. Pr22-3 was shown to digest laminarin, indicating that this TL protein has glucanase activity. In addition, Pr22-3 was more active in the spore bioassay than Pr22-2. Various combinations of the five proteins had a greater effect on R. secalis spores than did the individual proteins. The extraction of proteins with antifungal activity from the IWF of barley leaves indicates their possible role in defense against leaf pathogens. A similar bioassay may be developed for other systems to identify particular isoforms of pathogenicity-related proteins that might have a role in plant disease resistance.


2014 ◽  
Vol 81 (3) ◽  
pp. 806-811 ◽  
Author(s):  
Christian Kock ◽  
Yves F. Dufrêne ◽  
Jürgen J. Heinisch

ABSTRACTYeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.


2017 ◽  
Vol 398 (4) ◽  
pp. 491-498 ◽  
Author(s):  
Mohammad-Reza Bolouri Moghaddam ◽  
Andreas Vilcinskas ◽  
Mohammad Rahnamaeian

Abstract Antimicrobial peptides (AMPs) are essential components of the insect innate immune system. Their diversity provides protection against a broad spectrum of microbes and they have several distinct modes of action. Insect-derived AMPs are currently being developed for both medical and agricultural applications, and their expression in transgenic crops confers resistance against numerous plant pathogens. The antifungal peptide metchnikowin (Mtk), which was originally discovered in the fruit fly Drosophila melanogaster, is of particular interest because it has potent activity against economically important phytopathogenic fungi of the phylum Ascomycota, such as Fusarium graminearum, but it does not harm beneficial fungi such as the mycorrhizal basidiomycete Piriformospora indica. To investigate the specificity of Mtk, we used the peptide to screen a F. graminearum yeast two-hybrid library. This revealed that Mtk interacts with the fungal enzyme β(1,3)-glucanosyltransferase Gel1 (FgBGT), which is one of the enzymes responsible for fungal cell wall synthesis. The interaction was independently confirmed in a second interaction screen using mammalian cells. FgBGT is required for the viability of filamentous fungi by maintaining cell wall integrity. Our study therefore paves the way for further applications of Mtk in formulation of bio fungicides or as a supplement in food preservation.


2008 ◽  
Vol 21 (5) ◽  
pp. 525-534 ◽  
Author(s):  
Junhyun Jeon ◽  
Jaeduk Goh ◽  
Sungyong Yoo ◽  
Myoung-Hwan Chi ◽  
Jaehyuk Choi ◽  
...  

Insertional mutagenesis of Magnaporthe oryzae led to the identification of MCK1, a pathogenicity gene predicted to encode mitogen-activated protein kinase kinase kinase (MAPKKK) homologous to BCK1 in Saccharomyces cerevisiae. Targeted disruption of MCK1 resulted in the fungus undergoing autolysis and showing hypersensitivity to cell-wall-degrading enzyme. The mck1 produced significantly reduced numbers of conidia and developed appressoria in a slightly retarded manner compared with the wild type. Appressorium of the mck1 mutant was unable to penetrate into plant tissues, thereby rendering the mutant nonpathogenic. Cytorrhysis assay and monitoring of lipid mobilization suggested that the appressorial wall was altered, presumably affecting the level of turgor pressure within appressorium. Furthermore, the mck1 mutant failed to grow inside plant tissue. Complementation of the mutated gene restored its ability to cause disease symptoms, demonstrating that MCK1 is required for fungal pathogenicity. Taken together, our results suggest that MCK1 is an MAPKKK involved in maintaining cell wall integrity of M. oryzae, and that remodeling of the cell wall in response to host environments is essential for fungal pathogenesis.


2022 ◽  
Author(s):  
Yu Zhang ◽  
Mengyan Li ◽  
Hanying Wang ◽  
Juqing Deng ◽  
Jianxing Liu ◽  
...  

Abstract The mechanism of fungal cell wall synthesis and assembly is still unclear. Saccharomyces cerevisiae (S. cerevisiae) and pathogenic fungi are conserved in cell wall construction and response to stress signals, and often respond to cell wall stress through activated cell wall integrity (CWI) pathways. Whether the YLR358C open reading frame regulates CWI remains unclear. This study found that the growth of S. cerevisiae with YLR358C knockout was significantly inhibited on the medium containing different concentrations of cell wall interfering agents Calcofluor White (CFW), Congo Red (CR) and sodium dodecyl sulfate (SDS). CFW staining showed that the cell wall chitin was down-regulated, and transmission electron microscopy also observed a decrease in cell wall thickness. Transcriptome sequencing and analysis showed that YLR358C gene may be involved in the regulation of CWI signaling pathway. It was found by qRT-PCR that WSC3, SWI4 and HSP12 were differentially expressed after YLR358C was knocked out. The above results suggest that YLR358C may regulate the integrity of the yeast cell walls and has some potential for application in fermentation.


Sign in / Sign up

Export Citation Format

Share Document