scholarly journals Impacts of Sodium Arsenite on Wood Microbiota of Esca-Diseased Grapevines

2021 ◽  
Vol 7 (7) ◽  
pp. 498
Author(s):  
Emilie Bruez ◽  
Philippe Larignon ◽  
Christophe Bertsch ◽  
Guillaume Robert-Siegwald ◽  
Marc-Henri Lebrun ◽  
...  

Although sodium arsenite was widely used in Europe until its ban in 2003, its effects on microorganisms is not clearly understood. To improve our understanding of sodium arsenite curative effect on GTDs, grapevines displaying esca-foliar symptoms from different French regions (Alsace, Champagne, Languedoc) were treated or not with sodium arsenite, and analyzed for their wood microbiota. Using metabarcoding, we identified the fungal and bacterial taxa composition of microbiota colonizing woody trunk tissues. Large differences in fungal microbiota composition between treated and untreated grapevines were observed while no major impacts were observed on bacteria microbiota. The main fungal species detected in untreated necrotic woody tissues was Fomitiporia mediterranea (63–94%), a fungal pathogen associated with esca. The relative abundance of this fungal species significantly decreased after sodium arsenite treatment in the three vineyards, in particular in white-rot necrotic tissues and their borders (−90%). F. mediterranea was the most sensitive to sodium arsenite among fungi from grapevine woody tissues. These results strongly suggest that the effect of sodium arsenite on GTDs is due to its ability to efficiently and almost specifically eliminate F. mediterranea from white-rot necrotic tissues, allowing saprobic fungi to colonize the tissues previously occupied by this pathogenic fungus.

2021 ◽  
Vol 9 (8) ◽  
pp. 1622
Author(s):  
Basanta Dhodary ◽  
Dieter Spiteller

Leaf-cutting ants live in mutualistic symbiosis with their garden fungus Leucoagaricus gongylophorus that can be attacked by the specialized pathogenic fungus Escovopsis. Actinomyces symbionts from Acromyrmex leaf-cutting ants contribute to protect L. gongylophorus against pathogens. The symbiont Streptomyces sp. Av25_4 exhibited strong activity against Escovopsis weberi in co-cultivation assays. Experiments physically separating E. weberi and Streptomyces sp. Av25_4 allowing only exchange of volatiles revealed that Streptomyces sp. Av25_4 produces a volatile antifungal. Volatile compounds from Streptomyces sp. Av25_4 were collected by closed loop stripping. Analysis by NMR revealed that Streptomyces sp. Av25_4 overproduces ammonia (up to 8 mM) which completely inhibited the growth of E. weberi due to its strong basic pH. Additionally, other symbionts from different Acromyrmex ants inhibited E. weberi by production of ammonia. The waste of ca. one third of Acomyrmex and Atta leaf-cutting ant colonies was strongly basic due to ammonia (up to ca. 8 mM) suggesting its role in nest hygiene. Not only complex and metabolically costly secondary metabolites, such as polyketides, but simple ammonia released by symbionts of leaf-cutting ants can contribute to control the growth of Escovopsis that is sensitive to ammonia in contrast to the garden fungus L. gongylophorus.


2019 ◽  
Author(s):  
Anika Lehmann ◽  
Weishuang Zheng ◽  
Masahiro Ryo ◽  
Katharina Soutschek ◽  
Rebecca Rongstock ◽  
...  

AbstractSoil health and sustainability is essential for ecosystem functioning and human well-being. Soil structure, the complex arrangement of soil into aggregates and pore spaces, is a key feature of soils under the influence of soil life. Soil biota, and among them filamentous saprobic fungi, have well-documented effects on soil aggregation. However, it is unclear what fungal properties, or traits, contribute to the overall positive effect on soil aggregation. So far, we lack a systematic investigation of a broad suite of fungal species for their trait expression and the relation of these traits to their soil aggregation capability.Here, we apply a trait-based approach to a set of 15 traits measured under standardized conditions on 31 fungal strains including Ascomycota, Basidiomycota and Mucoromycota, all isolated from the same soil.We found a spectrum of soil aggregate formation capability ranging from neutral to positive and large differences in trait expression among strains. We identified biomass density (positive effects), leucine aminopeptidase activity (negative effects) and phylogeny as important modulators of fungal aggregate formation capability. Our results point to a typical suite of traits characterizing fungi that are good soil aggregators; this could inform screening for fungi to be used in biotechnological applications, and illustrates the power of employing a trait-based approach to unravel biological mechanisms of soil aggregation, which could now be extended to other organism groups.


EUGENIA ◽  
2011 ◽  
Vol 17 (3) ◽  
Author(s):  
Emmy Senewe ◽  
Guntur Manengkey

ABSTRACT Leptocorisa oratorius is one major pest of rice in North Sulawesi. Hence, it is necessary to control the pest. The research objective was to identify and to test pathogenicity of local  entomopathogen fungi which infected  Leptocorisa oratorius. The pathogens were collected through sampling of L. oratorius which had been infected by the fungi in the field. The pathogenic fungi was isolated using PDA medium, identified followed by inoculation for pathogenecity test.  During several sampling pest, it was found that  L. oratorius was attacked by fungal pathogens in the field. The identification revelead that the fungal pathogens were Beauveria sp and Fusarium sp. Both the fungal pathogen produced white mycelium and could only be distinguished using microscope in the laboratory. Result of pathogenicity tests showed that the two fungal pathogens caused different mortality of the L. oratorius. Mortality of  L. oratorius caused by pathogenic fungus Beauveria sp was  30.3% . Whereas, mortality of  L. oratorius caused by Fusarium sp was only 3.33%. Keywords : pathogenic fungi, entomopathogen, pathogenicity tests, L. oratorius


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Annalingam Kirisanth ◽  
M. N. M. Nafas ◽  
Ranga K. Dissanayake ◽  
Jayantha Wijayabandara

Medicinal plants have been the main focus of natural product research. However, recent research has revealed that lower plants including bryophytes are also a major resource of biologically active compounds with novel structures. Sri Lanka is considered as a biodiversity hotspot with a higher degree of endemism flora including bryophytes. In this study, different species of bryophytes were investigated for their antimicrobial and alpha-amylase inhibitory activities. The air-dried plant materials of 6 different bryophyte species, Marchantia sp., Fissidens sp., Plagiochila sp., Sematophyllum demissum, Hypnum cupressiforme, and Calymperes motley, were subjected to sequential cold extraction with 3 different organic solvents. All three types of organic crude extracts were subjected to screening of antimicrobial bioassays using the disc-diffusion method against 3 bacterial strains and 1 fungal strain. According to the results obtained, 6 extracts out of 18 showed antibacterial activity for tested Gram-positive bacteria and 1 active against Gram-negative bacteria. Two extracts showed activity against the pathogenic fungus strain. Extracts from some plants were active against tested bacterial as well as fungal species. TLC-based bioautographic study was carried out to identify the corresponding active bands which is useful for active compound isolation. Furthermore, the ethyl acetate extracts were subjected to evaluate alpha-amylase inhibitory activity where three extracts out of six extracts showed moderate inhibitory activity for alpha-amylase with IC50 ranging 8–30%.


2016 ◽  
Vol 148 (5) ◽  
pp. 543-551 ◽  
Author(s):  
Mark A. Sarvary ◽  
Ann E. Hajek ◽  
Katalin Böröczky ◽  
Robert A. Raguso ◽  
Miriam F. Cooperband

AbstractThe invasive woodwaspSirex noctilioFabricius (Hymenoptera: Siricidae) is obligately associated with the symbiotic white rot fungusAmylostereum areolatum(Chaillet ex Fries) Boidin (Basidiomycota: Amylosteraceae), and shows positive chemotaxis to volatiles emitted by this symbiont. After introduction to North America,S. noctiliowas collected carrying another fungus speciesAmylostereum chailletii(Persoon) Boidin, used symbiotically by native North AmericanSirexLinnaeus. We conducted flight behaviour studies in a walk-in flight tunnel to evaluate specificity of the attraction of mated and unmatedS. noctilioto its primary symbiont,A. areolatum, versus the alternative symbiont,A. chailletii. Fewer unmated than matedS. noctiliofemales responded to either of the fungi. Unmated females showed no landing preference but matedS. noctiliofemales were attracted toA. areolatumalthough avoidance ofA. chailletiiwas not complete. Chemical analysis demonstrated major differences in the volatile profiles of the two fungal species. Sesquiterpenes dominated theA. areolatumsamples, whereas only two aromatic volatiles were consistently present in the nativeA. chailletii.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Elias Epp ◽  
Elena Nazarova ◽  
Hannah Regan ◽  
Lois M. Douglas ◽  
James B. Konopka ◽  
...  

ABSTRACT Clathrin-mediated endocytosis (CME) is conserved among eukaryotes and has been extensively analyzed at a molecular level. Here, we present an analysis of CME in the human fungal pathogen Candida albicans that shows the same modular structure as those in other fungi and mammalian cells. Intriguingly, C. albicans is perfectly viable in the absence of Arp2/3, an essential component of CME in other systems. In C. albicans, Arp2/3 function remains essential for CME as all 15 proteins tested that participate in CME, including clathrin, lose their characteristic dynamics observed in wild-type (WT) cells. However, since arp2/3 cells are still able to endocytose lipids and fluid-phase markers, but not the Ste2 and Mup1 plasma membrane proteins, there must be an alternate clathrin-independent pathway we term Arp2/3-independent endocytosis (AIE). Characterization of AIE shows that endocytosis in arp2 mutants relies on actin cables and other Arp2/3-independent actin structures, as inhibition of actin functions prevented cargo uptake in arp2/3 mutants. Transmission electron microscopy (TEM) showed that arp2/3 mutants still formed invaginating tubules, cell structures whose proper functions are believed to heavily rely on Arp2/3. Finally, Prk1 and Sjl2, two proteins involved in patch disassembly during CME, were not correctly localized to sites of endocytosis in arp2 mutants, implying a role of Arp2/3 in CME patch disassembly. Overall, C. albicans contains an alternative endocytic pathway (AIE) that relies on actin cable function to permit clathrin-independent endocytosis (CIE) and provides a system to further explore alternate endocytic routes that likely exist in fungal species. IMPORTANCE There is a well-established process of endocytosis that is generally used by eukaryotic cells termed clathrin-mediated endocytosis (CME). Although the details are somewhat different between lower and higher eukaryotes, CME appears to be the dominant endocytic process in all eukaryotes. While fungi such as Saccharomyces cerevisiae have proven excellent models for dissecting the molecular details of endocytosis, loss of CME is so detrimental that it has been difficult to study alternate pathways functioning in its absence. Although the fungal pathogen Candida albicans has a CME pathway that functions similarly to that of S. cerevisiae, inactivation of this pathway does not compromise growth of yeast-form C. albicans. In these cells, lipids and fluid-phase molecules are still endocytosed in an actin-dependent manner, but membrane proteins are not. Thus, C. albicans provides a powerful model for the analysis of CME-independent endocytosis in lower eukaryotes.


2018 ◽  
Vol 19 (8) ◽  
pp. 2379 ◽  
Author(s):  
Young-Jin Park ◽  
Yong-Un Jeong ◽  
Won-Sik Kong

Next-generation sequencing (NGS) of the Flammulina elastica (wood-rotting basidiomycete) genome was performed to identify carbohydrate-active enzymes (CAZymes). The resulting assembly (31 kmer) revealed a total length of 35,045,521 bp (49.7% GC content). Using the AUGUSTUS tool, 12,536 total gene structures were predicted by ab initio gene prediction. An analysis of orthologs revealed that 6806 groups contained at least one F. elastica protein. Among the 12,536 predicted genes, F. elastica contained 24 species-specific genes, of which 17 genes were paralogous. CAZymes are divided into five classes: glycoside hydrolases (GHs), carbohydrate esterases (CEs), polysaccharide lyases (PLs), glycosyltransferases (GTs), and auxiliary activities (AA). In the present study, annotation of the predicted amino acid sequences from F. elastica genes using the dbCAN CAZyme database revealed 508 CAZymes, including 82 AAs, 218 GHs, 89 GTs, 18 PLs, 59 CEs, and 42 carbohydrate binding modules in the F. elastica genome. Although the CAZyme repertoire of F. elastica was similar to those of other fungal species, the total number of GTs in F. elastica was larger than those of other basidiomycetes. This genome information elucidates newly identified wood-degrading machinery in F. elastica, offers opportunities to better understand this fungus, and presents possibilities for more detailed studies on lignocellulosic biomass degradation that may lead to future biotechnological and industrial applications.


Holzforschung ◽  
2016 ◽  
Vol 70 (9) ◽  
pp. 877-884 ◽  
Author(s):  
Jie Gao ◽  
Jong Sik Kim ◽  
Nasko Terziev ◽  
Geoffrey Daniel

Abstract Softwoods (SW, spruce and fir) and hardwoods (HW, ash and beech) were thermally modified by the thermo-vacuum (Termovuoto) process for 3–4 h in the temperature range 160–220°C (TMW160–220°C) and their fungal durability were examined in soil-block tests with two brown rot (BR, Postia placenta, Gloeophyllum trabeum) and two white rot (WR, Pycnoporus sanguineus, Phlebia radiata) fungi. SW-TMW160–220°C were exposed to P. placenta and P. sanguineus and HW-TMW190–220°C to all fungal species. Considerable improvement (durability class 1–3) in decay resistance was only achieved for SW- and HW-TMW220°C. Thermal modification (TM) below 200°C influenced decay resistance negatively in case of some fungal species applied for both SW and HW. Judged by the durability class, decay resistance was higher in HW- than in SW-TMW at high TM temperature. Behavior of TM differed significantly between ash (ring-porous HW) and beech (diffuse-porous HW). A comparison between results of soil- and agar-block tests on Termovouoto wood demonstrated that the influence of testing method in terms of assignment to durability classes is not significant.


Sign in / Sign up

Export Citation Format

Share Document