scholarly journals IDENTIFIKASI DAN UJI PATOGENISITAS CENDAWAN ENTOMOPATOGEN LOKAL TERHADAP Leptocorisa oratorius

EUGENIA ◽  
2011 ◽  
Vol 17 (3) ◽  
Author(s):  
Emmy Senewe ◽  
Guntur Manengkey

ABSTRACT Leptocorisa oratorius is one major pest of rice in North Sulawesi. Hence, it is necessary to control the pest. The research objective was to identify and to test pathogenicity of local  entomopathogen fungi which infected  Leptocorisa oratorius. The pathogens were collected through sampling of L. oratorius which had been infected by the fungi in the field. The pathogenic fungi was isolated using PDA medium, identified followed by inoculation for pathogenecity test.  During several sampling pest, it was found that  L. oratorius was attacked by fungal pathogens in the field. The identification revelead that the fungal pathogens were Beauveria sp and Fusarium sp. Both the fungal pathogen produced white mycelium and could only be distinguished using microscope in the laboratory. Result of pathogenicity tests showed that the two fungal pathogens caused different mortality of the L. oratorius. Mortality of  L. oratorius caused by pathogenic fungus Beauveria sp was  30.3% . Whereas, mortality of  L. oratorius caused by Fusarium sp was only 3.33%. Keywords : pathogenic fungi, entomopathogen, pathogenicity tests, L. oratorius

2022 ◽  
Vol 2 ◽  
Author(s):  
Sefinew Tilahun ◽  
Marye Alemu ◽  
Mesfin Tsegaw ◽  
Nega Berhane

Ginger diseases caused by fungal pathogens have become one of the most serious problems causing reduced production around the world. It has also caused a major problem among farmers in different parts of Ethiopia resulting in a huge decline in rhizome yield. However, the exact causative agents of this disease have not been identified in the state. Although there are few studies related to pathogenic fungus identification, molecular level identification of fungal pathogen was not done in the area. Therefore, this study was undertaken to isolate and characterized the fungal causative agent of ginger disease from the diseased plant and the soil samples collected around the diseased plant from Chilga district, Gondar, Ethiopia. Samples from infected ginger plants and the soil around the infected plant were collected. Culturing and purification of isolates were made using Potato Dextrose Agar supplemented with antibacterial agent chloramphenicol. The morphological characterization was done by structural identification of the isolates under the microscope using lactophenol cotton blue stains. Isolated fungi were cultured and molecular identification was done using an internal transcribed spacer (ITS) of ribosomal DNA (rDNA). A total of 15 fungal morphotypes including 11 Aspergillus spp. (73.3%), 2 Penicillium spp. (13.3%), and single uncultured fungus clone S23 were isolated from the samples representing all the plant organs and the soil. Aspergillus spp. (73.3%) was the most common and seems to be the major causative agent. To the best of our knowledge, this is the first report of ginger pathogenic fungi in Ethiopia identified using ITS rDNA molecular techniques. This study will lay foundation for the development of management strategies for fungal diseases infecting ginger.


2019 ◽  
Author(s):  
Kian Hematy ◽  
Melisa Lim ◽  
Candice Cherk ◽  
Paweł Bednarek ◽  
Mariola Piślewska-Bednarek ◽  
...  

ABSTRACTPhytochelatin synthase (PCS) is a key component of heavy metal detoxification in plants. PCS catalyzes both the synthesis of the peptide phytochelatin from glutathione as well as the degradation of glutathione conjugates via peptidase activity. Here, we describe a hitherto uncharacterized role for PCS in disease resistance against plant pathogenic fungi. The pen4 mutant, which is allelic to cadmium insensitive 1 (cad1/pcs1) mutants, was recovered from a screen for Arabidopsis mutants with reduced resistance to the non-adapted barley fungal pathogen, Blumeria graminis f. sp. hordei. PCS1, which is found in the cytoplasm of cells of healthy plants, translocates upon pathogen attack and colocalizes with the PEN2 myrosinase on the surface of immobilized mitochondria. pcs1 and pen2 mutant plants exhibit a similar metabolic defect in the accumulation of pathogen-inducible indole glucosinolate-derived compounds, suggesting that PEN2 and PCS1 act in the same metabolic pathway. The function of PCS1 in this pathway is independent of phytochelatin synthesis and deglycination of glutathione conjugates, as catalytic-site mutants of PCS1 are still functional in indole glucosinolate metabolism. In uncovering a previously unknown function for PCS1, we reveal this enzyme to be a moonlighting protein important for plant responses to both biotic and abiotic stresses.


Author(s):  
S. M. Yahaya ◽  
A. B. Kamalu ◽  
M. U. Ali ◽  
M. Lawan ◽  
Y. S. Ajingi ◽  
...  

This research was conducted to determine the fungal pathogens responsible for post harvest losses of pineapple sold at Wudil and Yen lemo markets.  Two samples of pineapples were purchased twice a week from both Wudil and Yanlemo markets for four months. The samples were investigated for the presence of fungal pathogen using standard microbiological methods. The methods involve mounting small portion of pineapple in the plate containing Potato dextrose agar to isolate the fungi. Three fungal pathogens belonging to Aspergillus species were isolated, and Aspergillus niger had the highest frequency of occurrence of (50%). Followed by A. flavus with (27%). The A. fumigatus had the lowest frequency of occurrence of (23%). The differences between the fungal isolates recorded were significantly different (P<0.05) between the two markets, where higher fungal isolates were recorded at Yanlemo market 159 (40.6%) and Wudil 38 (9.71%). The study showed that the post harvest losses of pine apple in the two markets are attributed to fungal infection. Therefore, safe guarding the two markets from debris and dumps of rotten fruits and vegetable may assist in reducing fungal inoculums in the two markets.


2021 ◽  
pp. 105-109
Author(s):  
M. A. Filyushin ◽  
O. A. Danilova ◽  
T. M. Seredin

Relevance and methods. Losses of agricultural crops are associated not only with the development of diseases during the growing season, but also during post-harvest storage. Garlic is a popular vegetable and aromatic crop in world. Significant losses in garlic yield during cultivation and storage are associated with fungal pathogens, the most harmful of which are representatives of the genus Fusarium. In the Moscow region, the defeat of garlic by Fusarium occurs annually, but with varying intensity. At the Federal Scientific Vegetable Center (FSVC), it was shown that rot and wilting of garlic plants is caused by a complex of pathogenic fungi, including mainly different species of Fusarium. At the same time, the ratio of Fusarium species in the pathogenic complex changes from year to year, new Fusarium species and their races are registered. The aim of this study was to identify fungal phytopathogens causing dry rot of garlic cloves during post-harvest storage. To carry out the work, garlic bulbs of cultivars Dubkovsky and Strelets were taken from the FSVC storage.Results. As a result of visual examination, cloves with symptoms of dry rot were identified. The diseased cloves tissues were plated on potato dextrose agar to obtain fungal colonies. Analysis of the morphological and cultural characteristics of fungal isolates, as well as the nucleotide sequences of four DNA regions (ITS spacers, genes EF1α, RPB1, and RPB2) showed that the causative agent of dry rot of garlic cloves is the pathogenic fungus Fusarium proliferatum. In addition, in the field, identification was carried out based on the analysis of the sequences of spacers ITS and the EF1αgene of phytopathogenic fungi inhabiting the root zone of garlic plants. As a result, two species of fungi of the genus Fusarium (F. proliferatum and F. oxysporum f. sp. cepae), as well as the species Rhizoctonia solani, Volutella rosea, and Ceratobasidium sp. were found in the root zone of garlic cultivars.


2016 ◽  
Vol 1 (2) ◽  
pp. 6
Author(s):  
Uswatun Hasanah ◽  
Riwayati Riwayati ◽  
Idramsa Idramsa

This study aims to determine the ability of extracts  secondary metabolites of endophytic fungi raru plant Siarang (Cotylelobium melanoxylon) in inhibiting the growth of pathogenic fungi. Pathogenic fungi tested were Collectotrichum, Fusarium oxysporum, Candida albicans and Sclerotium rolfsii. Test antifungal pathogens carried out by using the method of Kirby-Bour, ie by measuring the clear zone located around the paper disc which is the zone of growth inhibition of pathogenic fungi. Measurement of inhibition zone is done by using a caliper or ruler. The results showed that the secondary metabolites of endophytic fungi extracts could inhibit the growth of pathogenic fungus Candida albicans is the clear zone of 10.23 mm. Keywords : endophytic fungus, Cotylelobium melanoxylon, extract of secondary metabolites, fungal pathogens, inhibition zone


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Muqdad Aldarraji ◽  
Fadel Hassan Yasin

   The results of isolation and diagnosis from the samples of the ficus from Saladin Governorate are Samarra, Samara University, Balad and Dhuloiya. The disease was caused by Hendersonula torulidea Nattrass, which was isolated from all samples by 100%. Ficus plant in Iraq.. The isolates did not differ in the daily growth rate and their dimensions on the PDA medium. Pathogenicity tests showed that isolates from the studied areas showed a significant increase in the severity of the disease. The isolates ranged between 80% and 75% respectively, whereas in the comparison treatment, it was 0%. The control factor Tricoderma harzianum and Bacillus subtilis showed high efficiency in plant protection from infection, reducing the severity of the disease to 25% and 40% of the sequence compared to the treatment of fungus alone, which was 95% severity of the disease.. It also resulted in an increase in the dry weight of the vegetative total of Tricoderma. harzianum and Bacillus subtilis with pathogenic fungus 5.6 and 3.03 g / plant respectively. The dry vegetative weight in the comparison treatment with isolating pathogenic fungi alone was 1.40 g / plant..


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Raden Soelistijono Dwi Susilo Utami Achmadi Priyatmojo

Ascocentrum miniatum (kebutan orchids) is an orchid species in Indonesia is growing in Java. This orchid is rare (Appendix 2) and difficult to be cultivated. One of the obstacles faced in orchid cultivation A.miniatum because they are prone to fungal pathogens. Of the many fungal pathogens that infect, at most dominating is the fungus Fusarium sp.The aim of the research is to identify the mycorrhizal Rhizoctonia contained in A.miniatum orchids that are resistant to the fungus Fusarium sp. This study is the first stage of the three stages of research for 3 years and performed at the Laboratory of Plant Diseases, Faculty of Agriculture UTP using methods that refers to the research conducted by Bayman dkk. (Otero, 2002) and Barnett & Hunter (1972). Each observation was repeated 5 with each replication contained 5 plants. Results showed that characterization of isolates of Rhizoctonia root mycorrhizal A. miniatum derived from Tawangmangu, Bandungan, Kaliurang, Sleman were not morphologically distinct. Equation characters are in colony color, length and number of the cell nucleus, while the characters are in wide differences in the cells and grouped in Tulasnella. Isolation of Fusarium showed macroconidia formation and pathogenicity tests are positive, and the extent of the disease is highest in the 5th month after the inoculation.


Microbiology ◽  
2009 ◽  
Vol 155 (2) ◽  
pp. 413-423 ◽  
Author(s):  
Rebeca Alonso-Monge ◽  
Sara Carvaihlo ◽  
Cesar Nombela ◽  
Eduardo Rial ◽  
Jesús Pla

Signal transduction pathways mediated by mitogen-activated protein kinases (MAPKs) play crucial roles in eukaryotic cells. In the pathogenic fungus Candida albicans the HOG MAPK pathway regulates the response to external stresses (osmotic and oxidative among others) and is involved in morphogenesis and virulence. We show here that the lack of the Hog1 MAPK increases the sensitivity of this fungus to inhibitors of the respiratory chain. hog1 mutants also show an enhanced basal respiratory rate compared to parental strains, and higher levels of intracellular reactive oxygen species despite an increased expression of detoxifying enzymes. We also demonstrate that although oxidative phosphorylation is essentially unaffected, hog1 mutants have an altered mitochondrial membrane potential. Data indicate that hog1-defective mutants are more dependent on mitochondrial ATP synthesis, probably due to an increased cellular ATP demand. Our results therefore link a MAPK pathway with respiratory metabolism in pathogenic fungi.


Author(s):  
V. М. Lukomets ◽  
S. V. Zelentsov

To improve the effectiveness of the soybeans and oil flax breeding, research to improve existing and develop new breeding methods are conducting in all-Russia Research institute of Oil Crops (Krasnodar). One of the improved methods for the soybean breeding, based on the use of sources of complexes of compensatory genes, is the CCG technology, which allows to create varieties with an increased yield of a heterotic level transmitted along the progeny for the entire life cycle of the variety. For the purpose of non-transgenic production of new traits, a theory of polyploid recombination of the genome (TPR) was formulated, which models the mechanism of the natural formation of polymorphism in the centers of origin of cultivated plants. On the basis of this theory, a method of breeding (TPR-technology) has been developed, which makes it possible to obtain recombinant reploids of soybeans and oil flax with an extended spectrum of traits. Of these reploids, the soybean lines with increased sucking force of the roots, providing high drought resistance, were distinguished; cold-resistant soybean lines, which stand in the phase of shoots of freezing to minus 5 °С; lines of oil flax with complete resistance to flax sickness of soil and high resistance to Fusarium; winter-hardy flax lines that withstand winter frosts down to minus 20–23 °С and ripen one and a half months earlier than spring sowings. Another original developed method is the ODCS-technology for isolating and selecting soybean genotypes with high resistance to fungal pathogens. The physiological basis of ODCS-technology is the blocking of osmotic nutrition of pathogenic fungi due to genetically determined increased osmotic pressure in the tissues of host plants. The practical implementation of CCG-, TPR- and ODKS-technologies in the selection process, allowed to create a whole series of soybean and oil flax varieties with improved or new traits.


2014 ◽  
Vol 14 (2) ◽  
Author(s):  
R. Soelistijono

This study examines the effectiveness of mycorrhizal Rhizoctonia resistance induction in Phalaenopsis amabilis against Fusarium sp. Fusarium solani is known as pathogens that attack many orchids P. amabilis (Chung et al., 2011) compared to other pathogenic fungi. Attack of Fusarium sp. will cause rot and yellow colored leaves. Until now there has been known as a biological control orchid against Fusarium sp. In this study tested the endurance locations in Sleman and Surakarta to see the effectiveness of a good orchid growth induced by Rhizoctonia mycorrhizal or not to attack by Fusarium sp. The results of the study showed that mycorrhizal Rhizoctonia able to inhibit the attack of Fusarium sp. It is shown by the value of the index of disease resistance  (DSI) in P. amabilis orchid mycorrhizal Rhizoctonia induced lower than that not induced. Mycorrhizal Rhizoctonia induction results in Sleman provide a more real than mycorrhizal Rhizoctonia induction in Surakarta.


Sign in / Sign up

Export Citation Format

Share Document