scholarly journals A Novel Deoxynivalenol-Activated Wheat Arl6ip4 Gene Encodes an Antifungal Peptide with Deoxynivalenol Affinity and Protects Plants against Fusarium Pathogens and Mycotoxins

2021 ◽  
Vol 7 (11) ◽  
pp. 941
Author(s):  
Gang Liu ◽  
Dong-Yun Zuo ◽  
Peng Yang ◽  
Wei-Jie He ◽  
Zheng Yang ◽  
...  

Deoxynivalenol (DON) is one of the most widespread trichothecene mycotoxins in contaminated cereal products. DON plays a vital role in the pathogenesis of Fusarium graminearum, but the molecular mechanisms of DON underlying Fusarium–wheat interactions are not yet well understood. In this study, a novel wheat ADP-ribosylation factor-like protein 6-interacting protein 4 gene, TaArl6ip4, was identified from DON-treated wheat suspension cells by suppression subtractive hybridization (SSH). The qRT-PCR result suggested that TaArl6ip4 expression is specifically activated by DON in both the Fusarium intermediate susceptible wheat cultivar Zhengmai9023 and the Fusarium resistant cultivar Sumai3. The transient expression results of the TaARL6IP4::GFP fusion protein indicate that TaArl6ip4 encodes a plasma membrane and nucleus-localized protein. Multiple sequence alignment using microscale thermophoresis showed that TaARL6IP4 comprises a conserved DON binding motif, 67HXXXG71, and exhibits DON affinity with a dissociation constant (KD) of 91 ± 2.6 µM. Moreover, TaARL6IP4 exhibited antifungal activity with IC50 values of 22 ± 1.5 µM and 25 ± 2.6 µM against Fusarium graminearum and Alternaria alternata, respectively. Furthermore, TaArl6ip4 interacted with the plasma membrane of Fusarium graminearum spores, resulting in membrane disruption and the leakage of cytoplasmic materials. The heterologous over-expression of TaArl6ip4 conferred greater DON tolerance and Fusarium resistance in Arabidopsis. Finally, we describe a novel DON-induced wheat gene, TaArl6ip4, exhibiting antifungal function and DON affinity that may play a key role in Fusarium–wheat interactions.

2021 ◽  
Vol 28 (10) ◽  
pp. 825-834
Author(s):  
Takaharu Sakuragi ◽  
Ryuta Kanai ◽  
Akihisa Tsutsumi ◽  
Hirotaka Narita ◽  
Eriko Onishi ◽  
...  

AbstractXkr8–Basigin is a plasma membrane phospholipid scramblase activated by kinases or caspases. We combined cryo-EM and X-ray crystallography to investigate its structure at an overall resolution of 3.8 Å. Its membrane-spanning region carrying 22 charged amino acids adopts a cuboid-like structure stabilized by salt bridges between hydrophilic residues in transmembrane helices. Phosphatidylcholine binding was observed in a hydrophobic cleft on the surface exposed to the outer leaflet of the plasma membrane. Six charged residues placed from top to bottom inside the molecule were essential for scrambling phospholipids in inward and outward directions, apparently providing a pathway for their translocation. A tryptophan residue was present between the head group of phosphatidylcholine and the extracellular end of the path. Its mutation to alanine made the Xkr8–Basigin complex constitutively active, indicating that it plays a vital role in regulating its scramblase activity. The structure of Xkr8–Basigin provides insights into the molecular mechanisms underlying phospholipid scrambling.


2019 ◽  
Vol 19 (10) ◽  
pp. 1293-1312 ◽  
Author(s):  
Tahreem Sahar ◽  
Aruna Nigam ◽  
Shadab Anjum ◽  
Farheen Waziri ◽  
Shipie Biswas ◽  
...  

Background: Recent advances in proteomics present enormous opportunities to discover proteome related disparities and thus understanding the molecular mechanisms related to a disease. Uterine leiomyoma is a benign monoclonal tumor, located in the pelvic region, and affecting 40% of reproductive aged female. Objective: Identification and characterization of the differentially expressed proteins associated with leiomyogenesis by comparing uterine leiomyoma and normal myometrium. Methods: Paired samples of uterine leiomyoma and adjacent myometrium retrieved from twenty-five females suffering from uterine leiomyoma (n=50) were submitted to two-dimensional electrophoresis (2-DE), matrixassisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and to reverse transcription polymerase chain reaction (RT-PCR). Results: Comparison of protein patterns revealed seven proteins with concordantly increased spot intensities in leiomyoma samples. E3 ubiquitin-protein ligase MIB2 (MIB2), Mediator of RNA polymerase II transcription subunit 10 (MED10), HIRA-interacting protein (HIRP3) and Fatty acid binding protein brain (FABP7) were found to be upregulated. While, Biogenesis of lysosome-related organelles complex 1 subunit 2 (BL1S2), Shadow of prion protein (SPRN) and RNA binding motif protein X linked like 2 (RMXL2) were found to be exclusively present in leiomyoma sample. The expression modulations of the corresponding genes were further validated which corroborated with the 2-DE result showing significant upregulation in leiomyoma. We have generated a master network showing the interactions of the experimentally identified proteins with their close neighbors and further scrutinized the network to prioritize the routes leading to cell proliferation and tumorigenesis. Conclusion: This study highlights the importance of identified proteins as potential targets for therapeutic purpose. This work provides an insight into the mechanism underlying the overexpression of the proteins but warrants further investigations.


2015 ◽  
Vol 290 (34) ◽  
pp. 21086-21100 ◽  
Author(s):  
Gurjot Kaur ◽  
Alexandra Pinggera ◽  
Nadine J. Ortner ◽  
Andreas Lieb ◽  
Martina J. Sinnegger-Brauns ◽  
...  

L-type voltage-gated Ca2+ channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I–IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca2+ levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca2+ channel function.


2015 ◽  
Vol 209 (5) ◽  
pp. 739-758 ◽  
Author(s):  
Alexander M. Holtz ◽  
Samuel C. Griffiths ◽  
Samantha J. Davis ◽  
Benjamin Bishop ◽  
Christian Siebold ◽  
...  

Vertebrate Hedgehog (HH) signaling is controlled by several ligand-binding antagonists including Patched-1 (PTCH1), PTCH2, and HH-interacting protein 1 (HHIP1), whose collective action is essential for proper HH pathway activity. However, the molecular mechanisms used by these inhibitors remain poorly understood. In this paper, we investigated the mechanisms underlying HHIP1 antagonism of HH signaling. Strikingly, we found evidence that HHIP1 non–cell-autonomously inhibits HH-dependent neural progenitor patterning and proliferation. Furthermore, this non–cell-autonomous antagonism of HH signaling results from the secretion of HHIP1 that is modulated by cell type–specific interactions with heparan sulfate (HS). These interactions are mediated by an HS-binding motif in the cysteine-rich domain of HHIP1 that is required for its localization to the neuroepithelial basement membrane (BM) to effectively antagonize HH pathway function. Our data also suggest that endogenous, secreted HHIP1 localization to HS-containing BMs regulates HH ligand distribution. Overall, the secreted activity of HHIP1 represents a novel mechanism to regulate HH ligand localization and function during embryogenesis.


Author(s):  
Jin Cheng ◽  
Xiaoning Duan ◽  
Xin Fu ◽  
Yanfang Jiang ◽  
Peng Yang ◽  
...  

Osteoarthritis (OA) is a highly prevalent and debilitating joint disorder that characterized by progressive destruction of articular cartilage. There is no effective disease-modifying therapy for the condition due to limited understanding of the molecular mechanisms on cartilage maintenance and destruction. Receptor-interacting protein kinase 1 (RIP1)-mediated necroptosis plays a vital role in various diseases, but the involvement of RIP1 in OA pathogenesis remains largely unknown. Here we show that typical necrotic cell morphology is observed within human OA cartilage samples in situ, and that RIP1 is significantly upregulated in cartilage from both OA patients and experimental OA rat models. Intra-articular RIP1 overexpression is sufficient to induce structural and functional defects of cartilage in rats, highlighting the crucial role of RIP1 during OA onset and progression by mediating chondrocyte necroptosis and disrupting extracellular matrix (ECM) metabolism homeostasis. Inhibition of RIP1 activity by its inhibitor necrostatin-1 protects the rats from trauma-induced cartilage degradation as well as limb pain. More importantly, we identify bone morphogenetic protein 7 (BMP7) as a novel downstream target that mediates RIP1-induced chondrocyte necroptosis and OA manifestations, thereby representing a non-canonical regulation mode of necroptosis. Our study supports a model whereby the activation of RIP1-BMP7 functional axis promotes chondrocyte necroptosis and subsequent OA pathogenesis, thus providing a new therapeutic target for OA.


2021 ◽  
Vol 22 (13) ◽  
pp. 6978
Author(s):  
Maria J. Iraburu ◽  
Tommy Garner ◽  
Cristina Montiel-Duarte

The endocytosis of ligand-bound receptors and their eventual recycling to the plasma membrane (PM) are processes that have an influence on signalling activity and therefore on many cell functions, including migration and proliferation. Like other tyrosine kinase receptors (TKR), the insulin receptor (INSR) has been shown to be endocytosed by clathrin-dependent and -independent mechanisms. Once at the early endosome (EE), the sorting of the receptor, either to the late endosome (LE) for degradation or back to the PM through slow or fast recycling pathways, will determine the intensity and duration of insulin effects. Both the endocytic and the endosomic pathways are regulated by many proteins, the Arf and Rab families of small GTPases being some of the most relevant. Here, we argue for a specific role for the slow recycling route, whilst we review the main molecular mechanisms involved in INSR endocytosis, sorting and recycling, as well as their possible role in cell functions.


2021 ◽  
Vol 7 (13) ◽  
pp. eabc6345
Author(s):  
Shrawan Kumar Mageswaran ◽  
Wei Yuan Yang ◽  
Yogaditya Chakrabarty ◽  
Catherine M. Oikonomou ◽  
Grant J. Jensen

Cryo–electron tomography (cryo-ET) provides structural context to molecular mechanisms underlying biological processes. Although straightforward to implement for studying stable macromolecular complexes, using it to locate short-lived structures and events can be impractical. A combination of live-cell microscopy, correlative light and electron microscopy, and cryo-ET will alleviate this issue. We developed a workflow combining the three to study the ubiquitous and dynamic process of shedding in response to plasma membrane damage in HeLa cells. We found filopodia-like protrusions enriched at damage sites and acting as scaffolds for shedding, which involves F-actin dynamics, myosin-1a, and vacuolar protein sorting 4B (a component of the ‘endosomal sorting complex required for transport’ machinery). Overall, shedding is more complex than current models of vesiculation from flat membranes. Its similarities to constitutive shedding in enterocytes argue for a conserved mechanism. Our workflow can also be adapted to study other damage response pathways and dynamic cellular events.


2021 ◽  
Vol 22 (5) ◽  
pp. 2704
Author(s):  
Andi Nur Nilamyani ◽  
Firda Nurul Auliah ◽  
Mohammad Ali Moni ◽  
Watshara Shoombuatong ◽  
Md Mehedi Hasan ◽  
...  

Nitrotyrosine, which is generated by numerous reactive nitrogen species, is a type of protein post-translational modification. Identification of site-specific nitration modification on tyrosine is a prerequisite to understanding the molecular function of nitrated proteins. Thanks to the progress of machine learning, computational prediction can play a vital role before the biological experimentation. Herein, we developed a computational predictor PredNTS by integrating multiple sequence features including K-mer, composition of k-spaced amino acid pairs (CKSAAP), AAindex, and binary encoding schemes. The important features were selected by the recursive feature elimination approach using a random forest classifier. Finally, we linearly combined the successive random forest (RF) probability scores generated by the different, single encoding-employing RF models. The resultant PredNTS predictor achieved an area under a curve (AUC) of 0.910 using five-fold cross validation. It outperformed the existing predictors on a comprehensive and independent dataset. Furthermore, we investigated several machine learning algorithms to demonstrate the superiority of the employed RF algorithm. The PredNTS is a useful computational resource for the prediction of nitrotyrosine sites. The web-application with the curated datasets of the PredNTS is publicly available.


Author(s):  
Xiang Zhou ◽  
Jixing Guo ◽  
Mingxia Zhang ◽  
Chunxiu Bai ◽  
Zheng Wang ◽  
...  

Abstract Crematogaster rogenhoferi (Hymenoptera: Formicidae), an omnivorous ant, is one of the dominant predatory natural enemies of a soft scale pest, Parasaissetia nigra Nietner (Homoptera: Coccidae), and can effectively control P. nigra populations in rubber forests. Olfaction plays a vital role in the process of predation. However, the information about the molecular mechanism of olfaction-evoked behaviour in C. rogenhoferi is limited. In this study, we conducted antennal transcriptome analysis to identify candidate olfactory genes. We obtained 53,892 unigenes, 16,185 of which were annotated. Based on annotations, we identified 49 unigenes related to chemoreception, including four odourant-binding proteins, three chemosensory proteins, 37 odourant receptors, two odourant ionotropic receptors and three sensory neuron membrane proteins. This is the first report on the molecular basis of the chemosensory system of C. rogenhoferi. The findings provide a basis for elucidating the molecular mechanisms of the olfactory-related behaviours of C. rogenhoferi, which would facilitate a better application of C. rogenhoferi as a biological control agent.


Sign in / Sign up

Export Citation Format

Share Document