scholarly journals Gut-Brain Axis Cross-Talk and Limbic Disorders as Biological Basis of Secondary TMAU

2021 ◽  
Vol 11 (2) ◽  
pp. 87
Author(s):  
Luigi Donato ◽  
Simona Alibrandi ◽  
Concetta Scimone ◽  
Andrea Castagnetti ◽  
Giacomo Rao ◽  
...  

Background: Trimethylaminuria (TMAU) is a rare metabolic syndrome characterized by the accumulation and the excretion of trimethylamine (TMA), a volatile diet compound produced by gut microbiota. Gut microbiota alterations are mainly involved in the secondary TMAU, whose patients show also different psychiatric conditions. We hypothesized that the biological activity of several molecules acting as intermediate in TMA metabolic reaction might be at the basis of TMAU psychiatric comorbidities. Methods: To corroborate this hypothesis, we performed the analysis of microbiota of both psychiatric suffering secondary TMAU patients and TMAU “mentally ill” controls, comparing the alteration of metabolites produced by their gut bacteria possibly involved in neurotransmission and, in the same time, belonging to biochemical pathways leading to TMA accumulation. Results: Microbiota analyses showed that Clostridiaceae, Lachnospiraceae and Coriobacteriaceae alterations represented the bacterial families with highest variations. This results in an excessive release of serotonin and an hyperactivation of the vagus nerve that might determine the widest spectrum of psychiatric disorders shown by affected patients. These metabolites, as short chain fatty acids, lactate and neurotransmitter precursors, are also related to TMA accumulation. Conclusions: Knowledge of microbiota-gut-brain axis may become a potential new strategy for improving metabolic diseases and to treat linked psychiatric disorders.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
You Lv ◽  
Xue Zhao ◽  
Weiying Guo ◽  
Ying Gao ◽  
Shuo Yang ◽  
...  

Metabolic diseases, especially diabetes mellitus, have become global health issues. The etiology of diabetes mellitus can be attributed to genetic and/or environmental factors. Current evidence suggests the association of gut microbiota with metabolic diseases. However, the effects of glucose-lowering agents on gut microbiota are poorly understood. Several studies revealed that these agents affect the composition and diversity of gut microbiota and consequently improve glucose metabolism and energy balance. Possible underlying mechanisms include affecting gene expression, lowering levels of inflammatory cytokines, and regulating the production of short-chain fatty acids. In addition, gut microbiota may alleviate adverse effects caused by glucose-lowering agents, and this can be especially beneficial in diabetic patients who experience severe gastrointestinal side effects and have to discontinue these agents. In conclusion, gut microbiota may provide a novel viewpoint for the treatment of patients with diabetes mellitus.


2015 ◽  
Vol 172 (4) ◽  
pp. R167-R177 ◽  
Author(s):  
Kristine H Allin ◽  
Trine Nielsen ◽  
Oluf Pedersen

Perturbations of the composition and function of the gut microbiota have been associated with metabolic disorders including obesity, insulin resistance and type 2 diabetes. Studies on mice have demonstrated several underlying mechanisms including host signalling through bacterial lipopolysaccharides derived from the outer membranes of Gram-negative bacteria, bacterial fermentation of dietary fibres to short-chain fatty acids and bacterial modulation of bile acids. On top of this, an increased permeability of the intestinal epithelium may lead to increased absorption of macromolecules from the intestinal content resulting in systemic immune responses, low-grade inflammation and altered signalling pathways influencing lipid and glucose metabolism. While mechanistic studies on mice collectively support a causal role of the gut microbiota in metabolic diseases, the majority of studies in humans are correlative of nature and thus hinder causal inferences. Importantly, several factors known to influence the risk of type 2 diabetes, e.g. diet and age, have also been linked to alterations in the gut microbiota complicating the interpretation of correlative studies. However, based upon the available evidence, it is hypothesised that the gut microbiota may mediate or modulate the influence of lifestyle factors triggering development of type 2 diabetes. Thus, the aim of this review is to critically discuss the potential role of the gut microbiota in the pathophysiology and pathogenesis of type 2 diabetes.


2021 ◽  
Vol 8 (4) ◽  
pp. 243-256
Author(s):  
Kurumi Taniguchi ◽  
◽  
Yuka Ikeda ◽  
Nozomi Nagase ◽  
Ai Tsuji ◽  
...  

<abstract> <p>Psychiatric disorders may extremely impair the quality of life with patients and are important reasons of social disability. Several data have shown that psychiatric disorders are associated with an altered composition of gut microbiota. Dietary intake could determine the microbiota, which contribute to produce various metabolites of fermentation such as short chain fatty acids. Some of the metabolites could result in epigenetic alterations leading to the disease susceptibility. Epigenetic dysfunction is in fact implicated in various psychiatric and neurologic disorders. For example, it has been shown that neuroepigenetic dysregulation occurs in psychiatric disorders including schizophrenia. Several studies have demonstrated that the intestinal microbiome may influence the function of central nervous system. Furthermore, it has been proved that the alterations in the gut microbiota-composition might affect in the bidirectional communication between gut and brain. Similarly, evidences demonstrating the association between psychiatric disorders and the gut microbiota have come from preclinical studies. It is clear that an intricate symbiotic relationship might exist between host and microbe, although the practical significance of the gut microbiota has not yet to be determined. In this review, we have summarized the function of gut microbiota in main psychiatric disorders with respect to the mental health. In addition, we would like to discuss the potential mechanisms of the disorders for the practical diagnosis and future treatment by using bioengineering of microbiota and their metabolites.</p> </abstract>


2021 ◽  
pp. 1-9
Author(s):  
Kazuo Yamashiro ◽  
Naohide Kurita ◽  
Takao Urabe ◽  
Nobutaka Hattori

<b><i>Background:</i></b> Major advances have been made in stroke treatment and prevention in the past decades. However, the burden of stroke remains high. Identification of novel targets and establishment of effective interventions to improve stroke outcomes are, therefore, needed. Recent research highlights the contribution of the gut microbiota to stroke pathogenesis. <b><i>Summary:</i></b> Compositional and functional alterations of the gut microbiota, termed dysbiosis, are linked to stroke risk factors, such as obesity, metabolic diseases, and atherosclerosis. In acute cerebral ischemia, the gut microbiota plays a key role in bidirectional interactions between the gut and brain, referred to as the microbiota-gut-brain axis. Gut dysbiosis prior to ischemic stroke affects outcomes. Additionally, the brain affects the gut microbiota during acute ischemic brain injury, which in turn impacts outcomes. Interactions between the gut microbiota and stroke pathogenesis are mediated by several factors including bacterial components (e.g., lipopolysaccharide), gut microbiota-related metabolites (e.g., short-chain fatty acids and trimethylamine N-oxide), and the immune and nervous systems. Clinical studies have reported that patients with acute ischemic stroke exhibit gut dysbiosis, which is associated with host metabolism and inflammation, as well as functional outcomes. Modulation of the gut microbiota or its metabolites improves conditions related to stroke pathogenesis, including inflammation, cardiometabolic disease, atherosclerosis, and thrombosis. <b><i>Key Messages:</i></b> Accumulating evidence indicates that the gut microbiota plays a possible role in stroke pathogenesis. Modulation of the gut microbiota may provide a novel therapeutic strategy for the treatment and prevention of stroke.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 636
Author(s):  
Carles Rosés ◽  
Amanda Cuevas-Sierra ◽  
Salvador Quintana ◽  
José I. Riezu-Boj ◽  
J. Alfredo Martínez ◽  
...  

The MD (Mediterranean diet) is recognized as one of the healthiest diets worldwide and is associated with the prevention of cardiovascular and metabolic diseases. Dietary habits are considered one of the strongest modulators of gut microbiota, which seem to play a significant role in health status of the host. The purpose of the present study was to evaluate interactive associations between gut microbiota composition and habitual dietary intake in 360 Spanish adults from the Obekit cohort (normal weight, overweight, and obese participants). Dietary intake and adherence to the MD tests were administered and fecal samples were collected from each participant. Fecal 16S rRNA (ribosomal Ribonucleic Acid) gene sequencing was performed and checked against the dietary habits. MetagenomeSeq was the statistical tool applied to analyze data at the species taxonomic level. Results from this study identified several beneficial bacteria that were more abundant in the individuals with higher adherence to the MD. Bifidobacterium animalis was the species with the strongest association with the MD. Some SCFA (Short Chain Fatty Acids) -producing bacteria were also associated with MD. In conclusion, this study showed that MD, fiber, legumes, vegetable, fruit, and nut intake are associated with an increase in butyrate-producing taxa such as Roseburia faecis, Ruminococcus bromii, and Oscillospira (Flavonifractor) plautii.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Anita H Kelleher ◽  
Angelos K Sikalidis ◽  

The Mediterranean diet (MD) is considered one of the healthiest dietary patterns due to its rich provision of phytochemicals, antioxidants, vitamins, fiber, polyunsaturated, omega-3, and short-chain fatty acids through a variety of foods. The supply of such nutrients and bioactive components can support gut health and reduce systemic inflammation, with accumulating evidence from several human studies demonstrating the utility of the Mediterranean diet in the prevention of chronic and metabolic diseases. Further studies are needed to explore the role of the Mediterranean diet protecting against such diseases and the related mechanisms, including the interplay between components of the MD and gut microbiota. This brief systematic review specifically explores the recent evidence in humans investigating the link between MD and the human microbiota. Herein, over 50 articles were revised and referenced, after a careful vetting process, to produce this manuscript. Articles were ultimately selected based upon the detail and novelty of their content and contribution to the field.


Metabolites ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 133 ◽  
Author(s):  
Camilla Ceccarani ◽  
Giulia Bassanini ◽  
Chiara Montanari ◽  
Maria Cristina Casiraghi ◽  
Emerenziana Ottaviano ◽  
...  

A life-long dietary intervention can affect the substrates’ availability for gut fermentation in metabolic diseases such as the glycogen-storage diseases (GSD). Besides drug consumption, the main treatment of types GSD-Ia and Ib to prevent metabolic complications is a specific diet with definite nutrient intakes. In order to evaluate how deeply this dietary treatment affects gut bacteria, we compared the gut microbiota of nine GSD-I subjects and 12 healthy controls (HC) through 16S rRNA gene sequencing; we assessed their dietary intake and nutrients, their microbial short chain fatty acids (SCFAs) via gas chromatography and their hematic values. Both alpha-diversity and phylogenetic analysis revealed a significant biodiversity reduction in the GSD group compared to the HC group, and highlighted profound differences of their gut microbiota. GSD subjects were characterized by an increase in the relative abundance of Enterobacteriaceae and Veillonellaceae families, while the beneficial genera Faecalibacterium and Oscillospira were significantly reduced. SCFA quantification revealed a significant increase of fecal acetate and propionate in GSD subjects, but with a beneficial role probably reduced due to unbalanced bacterial interactions; nutritional values correlated to bacterial genera were significantly different between experimental groups, with nearly opposite cohort trends.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 728
Author(s):  
Wan-Li Cheng ◽  
Shao-Jung Li ◽  
Ting-I Lee ◽  
Ting-Wei Lee ◽  
Cheng-Chih Chung ◽  
...  

Fructose is a main dietary sugar involved in the excess sugar intake-mediated progression of cardiovascular diseases and cardiac arrhythmias. Chronic intake of fructose has been the focus on the possible contributor to the metabolic diseases and cardiac inflammation. Recently, the small intestine was identified to be a major organ in fructose metabolism. The overconsumption of fructose induces dysbiosis of the gut microbiota, which, in turn, increases intestinal permeability and activates host inflammation. Endotoxins and metabolites of the gut microbiota, such as lipopolysaccharide, trimethylamine N-oxide, and short-chain fatty acids, also influence the host inflammation and cardiac biofunctions. Thus, high-fructose diets cause heart–gut axis disorders that promote cardiac arrhythmia. Understanding how gut microbiota dysbiosis-mediated inflammation influences the pathogenesis of cardiac arrhythmia may provide mechanisms for cardiac arrhythmogenesis. This narrative review updates our current understanding of the roles of excessive intake of fructose on the heart-gut axis and proposes potential strategies for inflammation-associated cardiac vascular diseases.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-323071
Author(s):  
Allison Agus ◽  
Karine Clément ◽  
Harry Sokol

Metabolic disorders represent a growing worldwide health challenge due to their dramatically increasing prevalence. The gut microbiota is a crucial actor that can interact with the host by the production of a diverse reservoir of metabolites, from exogenous dietary substrates or endogenous host compounds. Metabolic disorders are associated with alterations in the composition and function of the gut microbiota. Specific classes of microbiota-derived metabolites, notably bile acids, short-chain fatty acids, branched-chain amino acids, trimethylamine N-oxide, tryptophan and indole derivatives, have been implicated in the pathogenesis of metabolic disorders. This review aims to define the key classes of microbiota-derived metabolites that are altered in metabolic diseases and their role in pathogenesis. They represent potential biomarkers for early diagnosis and prognosis as well as promising targets for the development of novel therapeutic tools for metabolic disorders.


2017 ◽  
Vol 10 (3) ◽  
pp. 163-171 ◽  
Author(s):  
Christina N. Heiss ◽  
Louise E. Olofsson

The gut microbiota has emerged as an environmental factor that modulates the host's energy balance. It increases the host's ability to harvest energy from the digested food, and produces metabolites and microbial products such as short-chain fatty acids, secondary bile acids, and lipopolysaccharides. These metabolites and microbial products act as signaling molecules that modulate appetite, gut motility, energy uptake and storage, and energy expenditure. Several findings suggest that the gut microbiota can affect the development of obesity. Germ-free mice are leaner than conventionally raised mice and they are protected against diet-induced obesity. Furthermore, obese humans and rodents have an altered gut microbiota composition with less phylogeneic diversity compared to lean controls, and transplantation of the gut microbiota from obese subjects to germ-free mice can transfer the obese phenotype. Taken together, these findings indicate a role for the gut microbiota in obesity and suggest that the gut microbiota could be targeted to improve metabolic diseases like obesity. This review focuses on the role of the gut microbiota in energy balance regulation and its potential role in obesity.


Sign in / Sign up

Export Citation Format

Share Document