scholarly journals Role of the Gut Microbiota in Stroke Pathogenesis and Potential Therapeutic Implications

2021 ◽  
pp. 1-9
Author(s):  
Kazuo Yamashiro ◽  
Naohide Kurita ◽  
Takao Urabe ◽  
Nobutaka Hattori

<b><i>Background:</i></b> Major advances have been made in stroke treatment and prevention in the past decades. However, the burden of stroke remains high. Identification of novel targets and establishment of effective interventions to improve stroke outcomes are, therefore, needed. Recent research highlights the contribution of the gut microbiota to stroke pathogenesis. <b><i>Summary:</i></b> Compositional and functional alterations of the gut microbiota, termed dysbiosis, are linked to stroke risk factors, such as obesity, metabolic diseases, and atherosclerosis. In acute cerebral ischemia, the gut microbiota plays a key role in bidirectional interactions between the gut and brain, referred to as the microbiota-gut-brain axis. Gut dysbiosis prior to ischemic stroke affects outcomes. Additionally, the brain affects the gut microbiota during acute ischemic brain injury, which in turn impacts outcomes. Interactions between the gut microbiota and stroke pathogenesis are mediated by several factors including bacterial components (e.g., lipopolysaccharide), gut microbiota-related metabolites (e.g., short-chain fatty acids and trimethylamine N-oxide), and the immune and nervous systems. Clinical studies have reported that patients with acute ischemic stroke exhibit gut dysbiosis, which is associated with host metabolism and inflammation, as well as functional outcomes. Modulation of the gut microbiota or its metabolites improves conditions related to stroke pathogenesis, including inflammation, cardiometabolic disease, atherosclerosis, and thrombosis. <b><i>Key Messages:</i></b> Accumulating evidence indicates that the gut microbiota plays a possible role in stroke pathogenesis. Modulation of the gut microbiota may provide a novel therapeutic strategy for the treatment and prevention of stroke.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
You Lv ◽  
Xue Zhao ◽  
Weiying Guo ◽  
Ying Gao ◽  
Shuo Yang ◽  
...  

Metabolic diseases, especially diabetes mellitus, have become global health issues. The etiology of diabetes mellitus can be attributed to genetic and/or environmental factors. Current evidence suggests the association of gut microbiota with metabolic diseases. However, the effects of glucose-lowering agents on gut microbiota are poorly understood. Several studies revealed that these agents affect the composition and diversity of gut microbiota and consequently improve glucose metabolism and energy balance. Possible underlying mechanisms include affecting gene expression, lowering levels of inflammatory cytokines, and regulating the production of short-chain fatty acids. In addition, gut microbiota may alleviate adverse effects caused by glucose-lowering agents, and this can be especially beneficial in diabetic patients who experience severe gastrointestinal side effects and have to discontinue these agents. In conclusion, gut microbiota may provide a novel viewpoint for the treatment of patients with diabetes mellitus.


2020 ◽  
Vol 11 ◽  
Author(s):  
Denise Battaglini ◽  
Pedro Moreno Pimentel-Coelho ◽  
Chiara Robba ◽  
Claudia C. dos Santos ◽  
Fernanda Ferreira Cruz ◽  
...  

2015 ◽  
Vol 172 (4) ◽  
pp. R167-R177 ◽  
Author(s):  
Kristine H Allin ◽  
Trine Nielsen ◽  
Oluf Pedersen

Perturbations of the composition and function of the gut microbiota have been associated with metabolic disorders including obesity, insulin resistance and type 2 diabetes. Studies on mice have demonstrated several underlying mechanisms including host signalling through bacterial lipopolysaccharides derived from the outer membranes of Gram-negative bacteria, bacterial fermentation of dietary fibres to short-chain fatty acids and bacterial modulation of bile acids. On top of this, an increased permeability of the intestinal epithelium may lead to increased absorption of macromolecules from the intestinal content resulting in systemic immune responses, low-grade inflammation and altered signalling pathways influencing lipid and glucose metabolism. While mechanistic studies on mice collectively support a causal role of the gut microbiota in metabolic diseases, the majority of studies in humans are correlative of nature and thus hinder causal inferences. Importantly, several factors known to influence the risk of type 2 diabetes, e.g. diet and age, have also been linked to alterations in the gut microbiota complicating the interpretation of correlative studies. However, based upon the available evidence, it is hypothesised that the gut microbiota may mediate or modulate the influence of lifestyle factors triggering development of type 2 diabetes. Thus, the aim of this review is to critically discuss the potential role of the gut microbiota in the pathophysiology and pathogenesis of type 2 diabetes.


2021 ◽  
Vol 11 (24) ◽  
pp. 11871
Author(s):  
Roxana Toderean ◽  
Mihai Dimian ◽  
Claudiu Cobuz

Humans are facing a devastating epidemic of metabolic syndrome that is linked to the worldwide dramatic increase in obesity and diabetes. Significant evidence suggests that the intestinal microbiota plays a major role in the pathogenesis of metabolic diseases. Due to the gut–brain axis link, dysbiosis in the gut microbiota have been demonstrated in both metabolic and neurological disease. Increasing evidence suggests that the gut microbiota is very important in maintaining health and changes in its composition may contribute to psychiatric and neurodegenerative disorders. It is also in research that changes in microbiota composition profile due to diabetes are modulated by the vagus nerve. Therefore, it is plausible that disruptions in the gut microbiota may be captured through electroencephalography signaling. Several studies which used standard methods of signal processing have highlighted some changes in electroencephalographic rhythms on patients with diabetes.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 636
Author(s):  
Carles Rosés ◽  
Amanda Cuevas-Sierra ◽  
Salvador Quintana ◽  
José I. Riezu-Boj ◽  
J. Alfredo Martínez ◽  
...  

The MD (Mediterranean diet) is recognized as one of the healthiest diets worldwide and is associated with the prevention of cardiovascular and metabolic diseases. Dietary habits are considered one of the strongest modulators of gut microbiota, which seem to play a significant role in health status of the host. The purpose of the present study was to evaluate interactive associations between gut microbiota composition and habitual dietary intake in 360 Spanish adults from the Obekit cohort (normal weight, overweight, and obese participants). Dietary intake and adherence to the MD tests were administered and fecal samples were collected from each participant. Fecal 16S rRNA (ribosomal Ribonucleic Acid) gene sequencing was performed and checked against the dietary habits. MetagenomeSeq was the statistical tool applied to analyze data at the species taxonomic level. Results from this study identified several beneficial bacteria that were more abundant in the individuals with higher adherence to the MD. Bifidobacterium animalis was the species with the strongest association with the MD. Some SCFA (Short Chain Fatty Acids) -producing bacteria were also associated with MD. In conclusion, this study showed that MD, fiber, legumes, vegetable, fruit, and nut intake are associated with an increase in butyrate-producing taxa such as Roseburia faecis, Ruminococcus bromii, and Oscillospira (Flavonifractor) plautii.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Anita H Kelleher ◽  
Angelos K Sikalidis ◽  

The Mediterranean diet (MD) is considered one of the healthiest dietary patterns due to its rich provision of phytochemicals, antioxidants, vitamins, fiber, polyunsaturated, omega-3, and short-chain fatty acids through a variety of foods. The supply of such nutrients and bioactive components can support gut health and reduce systemic inflammation, with accumulating evidence from several human studies demonstrating the utility of the Mediterranean diet in the prevention of chronic and metabolic diseases. Further studies are needed to explore the role of the Mediterranean diet protecting against such diseases and the related mechanisms, including the interplay between components of the MD and gut microbiota. This brief systematic review specifically explores the recent evidence in humans investigating the link between MD and the human microbiota. Herein, over 50 articles were revised and referenced, after a careful vetting process, to produce this manuscript. Articles were ultimately selected based upon the detail and novelty of their content and contribution to the field.


Author(s):  
Natalia Di Tommaso ◽  
Antonio Gasbarrini ◽  
Francesca Romana Ponziani

The intestinal mucosa provides a selective permeable barrier for nutrient absorption and protection from external factors. It consists of epithelial cells, immune cells and their secretions. The gut microbiota participates in regulating the integrity and function of the intestinal barrier in a homeostatic balance. Pathogens, xenobiotics and food can disrupt the intestinal barrier, promoting systemic inflammation and tissue damage. Genetic and immune factors predispose individuals to gut barrier dysfunction, and changes in the composition and function of the gut microbiota are central to this process. The progressive identification of these changes has led to the development of the concept of ‘leaky gut syndrome’ and ‘gut dysbiosis’, which underlie the relationship between intestinal barrier impairment, metabolic diseases and autoimmunity. Understanding the mechanisms underlying this process is an intriguing subject of research for the diagnosis and treatment of various intestinal and extraintestinal diseases.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Li-Ying Zhang ◽  
Ting Zhou ◽  
Yi-Ming Zhang ◽  
Xiao-Min Xu ◽  
Yang-Yang Li ◽  
...  

The gut microbiota is important in metabolism and immune modulation, and compositional disruption of the gut microbiota population is closely associated with inflammation caused by ionizing radiation (IR). Guiqi Baizhu decoction (GQBZD) is a medicinal compound used in traditional Chinese medicine with anti-inflammatory and antioxidation effects, especially in the process of radiotherapy. However, the effect of GQBZD on reducing the damage to the normal immune system in radiotherapy remains unclear. Here, we show that GQBZD reduces body weights, water intake, food intake, diarrhea level and quality of life score, and inflammation and enhances immunity function in rats treated with X-ray radiation. Meanwhile, our data indicate that GQBZD not only reverses IR-induced gut dysbiosis as indicated change of α-diversity and β-diversity of microbiota, the composition of Desulfovibrio, Bacteroides, and Parabacteroides, except for Roseburia and Lachnoclostridium, but also maintains intestinal barrier integrity and promoting the formation of short-chain fatty acids (SCFAs). GQBZD can also reduce the level of phosphorylation P65 (p-P65). Our results demonstrate that GQBZD can significantly alleviate the inflammatory responses and improve the immune damage against IR, and may be used as prebiotic agents to prevent gut dysbiosis and radiation-related metabolic disorders in radiotherapy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yong-feng Bai ◽  
Si-wei Wang ◽  
Xiao-xiao Wang ◽  
Yuan-yuan Weng ◽  
Xue-yu Fan ◽  
...  

Abstract Background Flavonoids are reported to modulate the composition of gut microbiota, which play an important role in preventing obesity and associated metabolic diseases. In this study, we investigated the effect of Total Flavonoids of Quzhou Fructus Aurantii Extract (TFQ) on gut microbial community in mice fed with a high-fat diet (HFD). Methods C57BL/6J mice were fed with either a chow diet or HFD with or without oral gavage of TFQ (300 mg/kg/day) for 12 weeks. Results Our data indicate TFQ significantly reduced obesity, inflammatio,n and liver steatosis. TFQ elevates the expression of tight junction proteins and reduces metabolic endotoxemia. In addition, TFQ treatment reverses HFD-induced gut dysbiosis, as indicated by the reduction of Firmicutes to Bacteroidetes ratio, the increase of genera Akkermansia and Alistipes, and the decrease of genera Dubosiella, Faecalibaculum, and Lactobacillus. Conclusion These findings support a prebiotic role of TFQ as a dietary supplement for the intervention of gut dysbiosis and obesity-related metabolic disorders.


Sign in / Sign up

Export Citation Format

Share Document