scholarly journals Arabidopsis Plant Natriuretic Peptide Is a Novel Interactor of Rubisco Activase

Life ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Ilona Turek ◽  
Chris Gehring ◽  
Helen Irving

Plant natriuretic peptides (PNPs) are a group of systemically acting peptidic hormones affecting solute and solvent homeostasis and responses to biotrophic pathogens. Although an increasing body of evidence suggests PNPs modulate plant responses to biotic and abiotic stress, which could lead to their potential biotechnological application by conferring increased stress tolerance to plants, the exact mode of PNPs action is still elusive. In order to gain insight into PNP-dependent signalling, we set out to identify interactors of PNP present in the model plant Arabidopsis thaliana, termed AtPNP-A. Here, we report identification of rubisco activase (RCA), a central regulator of photosynthesis converting Rubisco catalytic sites from a closed to an open conformation, as an interactor of AtPNP-A through affinity isolation followed by mass spectrometric identification. Surface plasmon resonance (SPR) analyses reveals that the full-length recombinant AtPNP-A and the biologically active fragment of AtPNP-A bind specifically to RCA, whereas a biologically inactive scrambled peptide fails to bind. These results are considered in the light of known functions of PNPs, PNP-like proteins, and RCA in biotic and abiotic stress responses.

2021 ◽  
Author(s):  
Panchaal Bhattacharjee ◽  
Prashant K. Nimbolkar ◽  
Subhash Chander ◽  
Shubranil Das

The term ‘bio-regulator’ has been used to encompass the natural and synthetic compounds that regulate various plant growth and developmental processes. Plant bio-regulators (PBRs) previously called plant growth regulators. Use of PBRs with a unique fact finding support assistance from biotechnology made a new approach of manipulating plant biological activities for enhancing growth, yield, quality, nutritive value and an important tool to reduce biotic and abiotic stress in plants. PBRs like jasmonic acid (JA) and its derivatives act as an omnipresent signaling molecules which mediate plant responses to biotic and abiotic stress. Salicylic acid (SA) and methyl salicylate are endogenous signal molecules, also playing pivotal roles in regulating stress responses. A polyamine is low-molecular weight organic compound having two or more primary amino groups, act as ethylene repressor. Prohexodione calcium is a new generation anti-gibberellin. Along with listed names several other bio-regulators are in vogue to improve plant growth, development, stress resistance, pathogenic defense and productivity. In this review, it’s an attempt to portray existing advanced knowledge about under utilized bio-regulators role and utility in cultivation of fruit crops.


Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 445
Author(s):  
Morena M. Tinte ◽  
Kekeletso H. Chele ◽  
Justin J. J. van der Hooft ◽  
Fidele Tugizimana

Plants are constantly challenged by changing environmental conditions that include abiotic stresses. These are limiting their development and productivity and are subsequently threatening our food security, especially when considering the pressure of the increasing global population. Thus, there is an urgent need for the next generation of crops with high productivity and resilience to climate change. The dawn of a new era characterized by the emergence of fourth industrial revolution (4IR) technologies has redefined the ideological boundaries of research and applications in plant sciences. Recent technological advances and machine learning (ML)-based computational tools and omics data analysis approaches are allowing scientists to derive comprehensive metabolic descriptions and models for the target plant species under specific conditions. Such accurate metabolic descriptions are imperatively essential for devising a roadmap for the next generation of crops that are resilient to environmental deterioration. By synthesizing the recent literature and collating data on metabolomics studies on plant responses to abiotic stresses, in the context of the 4IR era, we point out the opportunities and challenges offered by omics science, analytical intelligence, computational tools and big data analytics. Specifically, we highlight technological advancements in (plant) metabolomics workflows and the use of machine learning and computational tools to decipher the dynamics in the chemical space that define plant responses to abiotic stress conditions.


Author(s):  
Bo Shu ◽  
YaChao Xie ◽  
Fei Zhang ◽  
Dejian Zhang ◽  
Chunyan Liu ◽  
...  

Calmodulin-like (CML) proteins represent a diverse family of protein in plants, and play significant roles in biotic and abiotic stress responses. However, the involvement of citrus CMLs in plant responses to drought stress (abiotic stress) and arbuscular mycorrhizal fungi (AMF) colonization remain relatively unknown. We characterized the citrus CML genes by analyzing the EF-hand domains and a genome-wide search, and identified a total of 38 such genes, distributed across at least nine chromosomes. Six tandem duplication clusters were observed in the CsCMLs, and 12 CsCMLs exhibited syntenic relationships with Arabidopsis thaliana CMLs. Gene expression analysis showed that 29 CsCMLs were expressed in the roots, and exhibited differential expression patterns. The regulation of CsCMLs expression was not consistent with the cis-elements identified in their promoters. CsCML2, 3, and 5 were upregulated in response to drought stress, and AMF colonization repressed the expression of CsCML7, 9, 12, 13,20, 27, 28, and 35,and induced that of CsCML1, 2, 3, 5, 8, 10, 11, 14, 15, 16, 18, 25, 30, 33, and 37. Furthermore, AMF colonization and drought stress exerted a synergistic effect, evident from the enhanced repression of CsCML7, 9, 12, 13, 27, 28, and 35 and enhanced expression of CsCML2, 3, and 5 under AMF colonization and drought stress. The present study provides valuable insights into the CsCML gene family and its responses to AMF colonization and drought stress.


Genes ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 25 ◽  
Author(s):  
Xue Yang ◽  
Jinchi Wei ◽  
Zhihai Wu ◽  
Jie Gao

Glutathione S-transferases (GSTs)—an especially plant-specific tau class of GSTs—are key enzymes involved in biotic and abiotic stress responses. To improve the stress resistance of crops via the genetic modification of GSTs, we predicted the amino acids present in the GSH binding site (G-site) and hydrophobic substrate-binding site (H-site) of OsGSTU17, a tau class GST in rice. We then examined the enzyme activity, substrate specificity, enzyme kinetics and thermodynamic stability of the mutant enzymes. Our results showed that the hydrogen bonds between Lys42, Val56, Glu68, and Ser69 of the G-site and glutathione were essential for enzyme activity and thermal stability. The hydrophobic side chains of amino acids of the H-site contributed to enzyme activity toward 4-nitrobenzyl chloride but had an inhibitory effect on enzyme activity toward 1-chloro-2,4-dinitrobenzene and cumene hydroperoxide. Different amino acids of the H-site had different effects on enzyme activity toward a different substrate, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Moreover, Leu112 and Phe162 were found to inhibit the catalytic efficiency of OsGSTU17 to 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, while Pro16, Leu112, and Trp165 contributed to structural stability. The results of this research enhance the understanding of the relationship between the structure and function of tau class GSTs to improve the abiotic stress resistance of crops.


2011 ◽  
Vol 11 (2) ◽  
pp. 341-355 ◽  
Author(s):  
Alfredo Simone Negri ◽  
Elisa Robotti ◽  
Bhakti Prinsi ◽  
Luca Espen ◽  
Emilio Marengo

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Waqas Ahmed ◽  
Yanshi Xia ◽  
Hua Zhang ◽  
Ronghua Li ◽  
Guihua Bai ◽  
...  

Abstract Plant microRNAs (miRNAs) are noncoding and endogenous key regulators that play significant functions in regulating plant responses to stress, and plant growth and development. Heat stress is a critical abiotic stress that reduces the yield and quality of flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee). However, limited information is available on whether miRNAs are involved in the regulation of heat stress in B. campestris. A high-throughput sequencing approach was used to identify novel and conserved heat-responsive miRNAs in four small RNA libraries of flowering Chinese cabbage using leaves collected at 0 h, 1 h, 6 h and 12 h after a 38 °C heat-stress treatment. The analysis identified 41 conserved miRNAs (belonging to 19 MIR families), of which MIR156, MIR159, MIR168, MIR171 and MIR1885 had the most abundant molecules. Prediction and evaluation of novel miRNAs using the unannotated reads resulted in 18 candidate miRNAs. Differential expression analysis showed that most of the identified miRNAs were downregulated in heat-treated groups. To better understand functional importance, bioinformatic analysis predicted 432 unique putative target miRNAs involved in cells, cell parts, catalytic activity, cellular processes and abiotic stress responses. Furthermore, the Kyoto Encyclopedia of Genes and Genomes maps of flowering Chinese cabbage identified the significant role of miRNAs in stress adaptation and stress tolerance, and in several mitogen-activated protein kinases signaling pathways including cell death. This work presents a comprehensive study of the miRNAs for understanding the regulatory mechanisms and their participation in the heat stress of flowering Chinese cabbage.


2019 ◽  
Vol 20 (22) ◽  
pp. 5676 ◽  
Author(s):  
Haifeng Yan ◽  
Mingzhi Li ◽  
Yuping Xiong ◽  
Jianming Wu ◽  
Jaime A. Teixeira da Silva ◽  
...  

WRKY proteins are a large superfamily of transcription factors that are involved in diverse biological processes including development, as well as biotic and abiotic stress responses in plants. WRKY family proteins have been extensively characterized and analyzed in many plant species, including Arabidopsis, rice, and poplar. However, knowledge on WRKY transcription factors in Santalum album is scarce. Based on S. album genome and transcriptome data, 64 SaWRKY genes were identified in this study. A phylogenetic analysis based on the structures of WRKY protein sequences divided these genes into three major groups (I, II, III) together with WRKY protein sequences from Arabidopsis. Tissue-specific expression patterns showed that 37 SaWRKY genes were expressed in at least one of five tissues (leaves, roots, heartwood, sapwood, or the transition zone), while the remaining four genes weakly expressed in all of these tissues. Analysis of the expression profiles of the 42 SaWRKY genes after callus was initiated by salicylic acid (SA) and methyl jasmonate (MeJA) revealed that 25 and 24 SaWRKY genes, respectively, were significantly induced. The function of SaWRKY1, which was significantly up-regulated by SA and MeJA, was analyzed. SaWRKY1 was localized in the nucleus and its overexpression improved salt tolerance in transgenic Arabidopsis. Our study provides important information to further identify the functions of SaWRKY genes and to understand the roles of SaWRKY family genes involved in the development and in SA- and MeJA-mediated stress responses.


Sign in / Sign up

Export Citation Format

Share Document