scholarly journals Impact of the LACKS of Fusion Induced by Additive Manufacturing on the Lubrication of a Gear Flank

Lubricants ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 83
Author(s):  
Franco Concli ◽  
Augusto Della Torre

Additive Manufacturing (AM) is becoming a more and more widespread technology. Its capability to produce complex geometries opens new design possibilities. Despite the big efforts made by the scientific community for improving the AM processes, this technology still has some limitations, mainly related to the achievable surface quality. It is known that AM technologies promote the formation of LACKS of fusion inside the material. In some cases, the external surfaces are finished with traditional machining. This is the case of AM-produced gears. While the grinding operation aims to reduce the surface roughness, the presence of porosities just below the surface of the wrought component, could lead, after grinding, to the exposure of those porosities leading to a pitted surface. This phenomenon is surely not beneficial in terms of structural resistance, but can help the lubrication promoting the clinging of the lubricant to the surface. The aim of this paper is to study this effect. Micro-Computer-Tomography (μ-CT) analyses were performed on a 17-4 PH Stainless Steel (SS) produced via Selective Laser Melting (SLM). The real geometry of the pores was reproduced virtually and analyzed by means of multiphase CFD analyses in the presence of centrifugal effects.

Author(s):  
Filippo Simoni ◽  
Andrea Huxol ◽  
Franz-Josef Villmer

AbstractIn the last years, Additive Manufacturing, thanks to its capability of continuous improvements in performance and cost-efficiency, was able to partly replace and redefine well-established manufacturing processes. This research is based on the idea to achieve great cost and operational benefits especially in the field of tool making for injection molding by combining traditional and additive manufacturing in one process chain. Special attention is given to the surface quality in terms of surface roughness and its optimization directly in the Selective Laser Melting process. This article presents the possibility for a remelting process of the SLM parts as a way to optimize the surfaces of the produced parts. The influence of laser remelting on the surface roughness of the parts is analyzed while varying machine parameters like laser power and scan settings. Laser remelting with optimized parameter settings considerably improves the surface quality of SLM parts and is a great starting point for further post-processing techniques, which require a low initial value of surface roughness.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3895 ◽  
Author(s):  
Abbas Razavykia ◽  
Eugenio Brusa ◽  
Cristiana Delprete ◽  
Reza Yavari

Additive Manufacturing (AM) processes enable their deployment in broad applications from aerospace to art, design, and architecture. Part quality and performance are the main concerns during AM processes execution that the achievement of adequate characteristics can be guaranteed, considering a wide range of influencing factors, such as process parameters, material, environment, measurement, and operators training. Investigating the effects of not only the influential AM processes variables but also their interactions and coupled impacts are essential to process optimization which requires huge efforts to be made. Therefore, numerical simulation can be an effective tool that facilities the evaluation of the AM processes principles. Selective Laser Melting (SLM) is a widespread Powder Bed Fusion (PBF) AM process that due to its superior advantages, such as capability to print complex and highly customized components, which leads to an increasing attention paid by industries and academia. Temperature distribution and melt pool dynamics have paramount importance to be well simulated and correlated by part quality in terms of surface finish, induced residual stress and microstructure evolution during SLM. Summarizing numerical simulations of SLM in this survey is pointed out as one important research perspective as well as exploring the contribution of adopted approaches and practices. This review survey has been organized to give an overview of AM processes such as extrusion, photopolymerization, material jetting, laminated object manufacturing, and powder bed fusion. And in particular is targeted to discuss the conducted numerical simulation of SLM to illustrate a uniform picture of existing nonproprietary approaches to predict the heat transfer, melt pool behavior, microstructure and residual stresses analysis.


2015 ◽  
Vol 651-653 ◽  
pp. 713-718 ◽  
Author(s):  
Marion Merklein ◽  
Raoul Plettke ◽  
Daniel Junker ◽  
Adam Schaub ◽  
Bhrigu Ahuja

The quality of additive manufactured parts however depends pretty much on the workers experience to control porosity, layer linkage and surface roughness. To analyze the robustness of the Laser Beam Melting (LBM) process a Round Robin test was made in which specimens from four institutes from different countries were tested and compared. For the tests each institute built a set of specimens out of stainless steel 1.4540. The aim of this work is to analyze the influence of the process parameters on the mechanical properties. The results show that there is a high potential for additive manufacturing but also a lot of further research is necessary to optimize this technology.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 729 ◽  
Author(s):  
Wei Chen ◽  
Guangfu Yin ◽  
Zai Feng ◽  
Xiaoming Liao

Additive manufacturing by selective laser melting (SLM) was used to investigate the effect of powder feedstock on 316L stainless steel properties include microstructure, relative density, microhardness and mechanical properties. Gas atomized SS316L powders of three different particle size distribution were used in this study. Microstructural investigations were done by scanning electron microscopy (SEM). Tensile tests were performed at room temperatures. Microstructure characterization revealed the presence of hierarchical structures consisting of solidified melt pools, columnar grains and multiform shaped sub-grains. The results showed that the SLM sample from the fine powder obtained the highest mechanical properties with ultimate tensile strength (UTS) of 611.9 ± 9.4 MPa and yield strength (YS) of 519.1 ± 5.9 MPa, and an attendant elongation (EL) of 14.6 ± 1.9%, and a maximum of 97.92 ± 0.13% and a high microhardness 291 ± 6 HV0.1. It has been verified that the fine powder (~16 μm) could be used in additive manufacturing with proper printing parameters.


Author(s):  
Miranda Fateri ◽  
Andreas Gebhardt

Selective Laser Melting (SLM) is one of the Additive Manufacturing (AM) technologies applicable for producing complex geometries which are typically expensive or difficult to fabricate using conventional methods. This process has been extensively investigated experimentally for various metals and the fabrication process parameters have been established for different applications; however, fabricating 3D glass objects using SLM technology has remained a challenge so far although it could have many applications. This paper presents a summery on various experimental evaluations of a material database incorporating the build parameters of glass powder using the SLM process for jewelry applications.


2018 ◽  
Vol 46 (4) ◽  
pp. 20170140 ◽  
Author(s):  
Derahman Nur Aqilah ◽  
Ab Karim Mohd Sayuti ◽  
Yusof Farazila ◽  
Dambatta Yusuf Suleiman ◽  
Mohd Amran Nor Amirah ◽  
...  

2014 ◽  
Vol 611-612 ◽  
pp. 811-817 ◽  
Author(s):  
Julen Ibabe ◽  
Antero Jokinen ◽  
Jari Larkiola ◽  
Gurutze Arruabarrena

Additive Manufacturing technology offers almost unlimited capacity when manufacturing parts with complex geometries which could be impossible to get with conventional manufacturing processes. This paper is based on the study of a particular real part which has been redesigned and manufactured using an AM process. The challenge consists of redesigning the geometry of an originally aluminium made part, in order to get a new stainless steel made model with same mechanical properties but with less weight. The new design is the result of a structural optimization process based on Finite Element simulations which is carried out bearing in mind the facilities that an AM process offers.


2015 ◽  
Vol 21 (3) ◽  
pp. 250-261 ◽  
Author(s):  
Brian N. Turner ◽  
Scott A Gold

Purpose – The purpose of this paper is to critically review the literature related to dimensional accuracy and surface roughness for fused deposition modeling and similar extrusion-based additive manufacturing or rapid prototyping processes. Design/methodology/approach – A systematic review of the literature was carried out by focusing on the relationship between process and product design parameters and the dimensional and surface properties of finished parts. Methods for evaluating these performance parameters are also reviewed. Findings – Fused deposition modeling® and related processes are the most widely used polymer rapid prototyping processes. For many applications, resolution, dimensional accuracy and surface roughness are among the most important properties in final parts. The influence of feedstock properties and system design on dimensional accuracy and resolution is reviewed. Thermal warping and shrinkage are often major sources of dimensional error in finished parts. This phenomenon is explored along with various approaches for evaluating dimensional accuracy. Product design parameters, in particular, slice height, strongly impact surface roughness. A geometric model for surface roughness is also reviewed. Originality/value – This represents the first review of extrusion AM processes focusing on dimensional accuracy and surface roughness. Understanding and improving relationships between materials, design parameters and the ultimate properties of finished parts will be key to improving extrusion AM processes and expanding their applications.


Author(s):  
Yong Deng ◽  
Zhongfa Mao ◽  
Nan Yang ◽  
Xiaodong Niu ◽  
Xiangdong Lu

Although the concept of additive manufacturing has been proposed for several decades, momentum of selective laser melting (SLM) is finally starting to build. In SLM, density and surface roughness, as the important quality indexes of SLMed parts, are dependent on the processing parameters. However, there are few studies on their collaborative optimization in SLM to obtain high relative density and low surface roughness simultaneously in the previous literature. In this work, the response surface method was adopted to study the influences of different processing parameters (laser power, scanning speed and hatch space) on density and surface roughness of 316L stainless steel parts fabricated by SLM. The statistical relationship model between processing parameters and manufacturing quality is established. A multi-objective collaborative optimization strategy considering both density and surface roughness is proposed. The experimental results show that the main effects of processing parameters on the density and surface roughness are similar. It is noted that the effects of the laser power and scanning speed on the above objective quality show highly significant, while hatch space behaves an insignificant impact. Based on the above optimization, 316L stainless steel parts with excellent surface roughness and relative density can be obtained by SLM with optimized processing parameters.


Sign in / Sign up

Export Citation Format

Share Document