scholarly journals Investigation the Corrosion Inhibition Effect of Itraconazole on Copper in H2SO4 at Different Temperatures: Combining Experimental and Theoretical Studies

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2107 ◽  
Author(s):  
Zhili Gong ◽  
Shini Peng ◽  
Xiaomei Huang ◽  
Lanzhou Gao

The anti-corrosion inhibition effect of itraconazole on copper (Cu) in 0.5 M H2SO4 is observed with variety of experimental methods, including electrochemical measurement, surface morphology analysis, and theoretical calculations. These experimental results all confirm that itraconazole exhibits excellent anti-corrosion performance in the certain temperatures range (298 K–313 K) for copper in sulfuric acid solution. In addition, corresponding adsorption isothermal models were used to fit the adsorption behavior of itraconazole on the copper surface. The results show that the Langmuir adsorption model agrees best with the experimental results. The adsorption of itraconazole on the copper surface belongs to chemical and physical adsorption.

2011 ◽  
Vol 233-235 ◽  
pp. 648-651
Author(s):  
Ai Jun Wei ◽  
Bei Feng ◽  
Xin Zhang ◽  
Fu Yong Huo

In this corrosion test, simulated brine is used as corrosion medium, added different concentrations of aloe juice. Static weight-loss method is employed, meanwhile, we calculated corrosion rate of Q235 steel and researched on the corrosion inhibition effect of aloe in different temperatures. Results show that aloe is a good inhibitor, rate of corrosion inhibition can reach 80% or more and suitable for the temperature of work environment is less than 60 °C.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5637
Author(s):  
Liying Wang ◽  
Chong Gao ◽  
Jianguo Feng ◽  
Yong Xu ◽  
Danqi Li ◽  
...  

The stability of the suspension system of the two crystal forms of pyraclostrobin is evaluated using multiple light technology, and the adsorption performance of polycarboxylate dispersant on the surface of two different crystalline pyraclostrobin particles is compared in combination with XRD, FTIR, XPS, and SEM from the microscopic view. The adsorption kinetics and thermodynamics studies of 2700 on the surfaces of different crystalline forms of pyraclostrobin particles show that the adsorption process of 2700 on the surfaces of pyraclostrobin crystal forms II and IV conform to pseudo-second-order kinetic adsorption model. The Ea values for crystal forms II and IV are 12.93 and 14.39 kJ∙mol−1, respectively, which indicates that both adsorption processes are physical adsorption. The adsorption models of 2700 on the surfaces of pyraclostrobin crystal forms II and IV are in accordance with Langmuir adsorption isotherms. The ∆Gad values of crystal forms II and IV are negative and the ∆Sad values are positive at different temperatures. Therefore, the adsorption processes are spontaneous and accompanied by entropy increase. The results of this study provide an important theoretical basis for the selection of polycarboxylate dispersants in the suspension of pyraclostrobin. This study also provides a reference for the research of polycrystalline pesticide suspension concentrate.


2013 ◽  
Vol 67 (7) ◽  
pp. 1544-1550 ◽  
Author(s):  
Bin Zeng ◽  
Mao-dong Li ◽  
Zhi-ping Zhu ◽  
Jun-ming Zhao ◽  
Hui Zhang

The primary method used for boiler water treatment is the addition of chemicals to industrial boilers to prevent corrosion and scaling. The static scale inhibition method was used to evaluate the scale inhibition performance of 1-hydroxyethylidene-1, 1-diphosphonic acid (HEDP). Autoclave static experiments were used to study the corrosion inhibition properties of the main material for industrial boilers (20# carbon steel) with an HEDP additive in the industrial boiler water medium. The electrochemical behavior of HEDP on carbon steel corrosion control was investigated using electrochemical impedance spectroscopy and Tafel polarization techniques. Experimental results indicate that HEDP can have a good scale inhibition effect when added at a quantity of 5 to 7 mg/L at a test temperature of not more than 100 °C. To achieve a high scale inhibition rate, the HEDP dosage must be increased when the test temperature exceeds 100 °C. Electrochemical and autoclave static experimental results suggest that HEDP has a good corrosion inhibition effect on 20# carbon steel at a concentration of 25 mg/L. HEDP is an excellent water treatment agent.


2019 ◽  
Vol 66 (2) ◽  
pp. 168-173
Author(s):  
Lin Liu ◽  
Hongyu Su ◽  
Xue Li ◽  
Yanan Wang ◽  
Qiang Zhang ◽  
...  

Purpose This paper aims to evaluate the inhibitive effect and adsorption behavior of the 2-amino-5-thiol-1,3,4-thiadiazole vanillin (A) on copper in 3 per cent NaCl solution. Design/methodology/approach A thiazole Schiff bases were synthesized, named, 2-amino-5-thiol-1,3,4-thiadiazole vanillin (A), which was fabricated respectively on copper surface by the molecular self-assembled. Evaluation was carried out by electrochemical measurement and surface analysis techniques. Measurement of static friction coefficient scanning electron microscopy and Contact angle analysis were applied, and it is finally confirmed the existence of the adsorbed film. The inhibitive mechanism of A was evaluated by means of quantitative calculation and molecular dynamics simulation. Findings The electrochemical measurement indicated that the self-assembled molecular film can effectively inhibit the corrosion of copper sheet, when the concentration was 15 mmol⋅L−1 and the assembly time was 6 h, the corrosion inhibition effect was the best, reaching as high as 97.5 per cent. Scanning electron microscopy results showed that the Schiff base compound forms a protective film on the surface of the copper, which effectively blocks the transfer of corrosion particles to the metal substrate, thereby inhibiting the occurrence of corrosion. Adsorption behavior of A followed the Langmuir’s adsorption isotherm and attributed to mixed-type adsorption. The results of Quantitative calculation and molecular dynamics simulation showed that A was adsorbed on Cu (111) surface in parallel. Research limitations/implications In this study, the corrosion inhibition properties of Schiff base film were investigated by combining theory with experiment. Theoretical calculation is helpful to guide the synthesis of efficient and environmentally friendly corrosion inhibitors. Practical implications The damage caused by metal corrosion is great. The self-assembled Schiff base membrane synthesized in this paper is simple and compact, and the corrosion inhibition efficiency of copper in 3 per cent NaCl solution is 97.5 per cent. Social implications Inhibition of metal corrosion can better save energy and reduce economic losses. Originality/value The synthesized Schiff base was prepared on the copper surface by the molecular self-assembled. The Schiff base membrane has a good corrosion inhibition effect on copper in 3 per cent NaCl solution, and the corrosion inhibition efficiency is up to 97.5 per cent.


Proceedings ◽  
2020 ◽  
Vol 55 (1) ◽  
pp. 1 ◽  
Author(s):  
Simona Căprărescu ◽  
Annette Madelene Dăncilă ◽  
Cristina Modrogan ◽  
Violeta Purcar

The aim of this work was to investigate the corrosion inhibition effect of natural seaweeds in seawater on carbon steel. The corrosion efficiency of carbon steel in the absence and the presence of natural seaweeds in seawater was evaluated by the gravimetric method at room temperature and calculating the corrosion rate and protection degree. The experimental results showed that the corrosion rate on carbon steel decreased when the seaweeds were used. In addition, the value of protection degree (P) was greater than 60% when seaweeds were used. Natural seaweeds reduce the corrosion rate and can be considered an ecofriendly corrosion inhibitor for carbon steel.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1721
Author(s):  
Mario Mora ◽  
Hippolyte Amaveda ◽  
Luis Porta-Velilla ◽  
Germán F. de la Fuente ◽  
Elena Martínez ◽  
...  

The objective of this work is the enhancement of metal-to-metal bonding to provide high thermal conductivity together with electrical insulation, to be used as heat sinks at room and cryogenic temperatures. High thermal conductive metal (copper) and epoxy resin (Stycast 2850FT) were used in this study, with the latter also providing the required electrical insulation. The copper surface was irradiated with laser to induce micro- and nano-patterned structures that result in an improvement of the adhesion between the epoxy and the copper. Thus, copper-to-copper bonding strength was characterized by means of mechanical tensile shear tests. The effect of the laser processing on the thermal conductivity properties of the Cu/epoxy/Cu joint at different temperatures, from 10 to 300 K, is also reported. Using adequate laser parameters, it is possible to obtain high bonding strength values limited by cohesive epoxy fracture, together with good thermal conductivity at ambient and cryogenic temperatures.


Sign in / Sign up

Export Citation Format

Share Document