scholarly journals Dynamic Crushing Analysis of a Three-Dimensional Re-Entrant Auxetic Cellular Structure

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 460 ◽  
Author(s):  
Tao Wang ◽  
Zhen Li ◽  
Liangmo Wang ◽  
Zhengdong Ma ◽  
Gregory Hulbert

Dynamic behaviors of the three-dimensional re-entrant auxetic cellular structure have been investigated by performing beam-based crushing simulation. Detailed deformation process subjected to various crushing velocities has been described, where three specific crushing modes have been identified with respect to the crushing velocity and the relative density. The crushing strength of the 3D re-entrant auxetic structure reveals to increase with increasing crushing velocity and relative density. Moreover, an analytical formula of dynamic plateau stress has been deduced, which has been validated to present theoretical predictions agreeing well with simulation results. By establishing an analytical model, the role of relative density on the energy absorption capacity of the 3D re-entrant auxetic structure has been further studied. The results indicate that the specific plastic energy dissipation is increased by increasing the relative density, while the normalized plastic energy dissipation has an opposite sensitivity to the relative density when the crushing velocity exceeds the critical transition velocity. The study in this work can provide insights into the dynamic property of the 3D re-entrant auxetic structure and provides an extensive reference for the crushing resistance design of the auxetic structure.

2010 ◽  
Vol 644 ◽  
pp. 433-463 ◽  
Author(s):  
ALEXANDER V. BABANIN ◽  
DMITRY CHALIKOV ◽  
I. R. YOUNG ◽  
IVAN SAVELYEV

The paper extends a pilot study into a detailed investigation of properties of breaking waves and processes responsible for breaking. Simulations of evolution of steep to very steep waves to the point of breaking are undertaken by means of the fully nonlinear Chalikov–Sheinin model. Particular attention is paid to evolution of nonlinear wave properties, such as steepness, skewness and asymmetry, in the physical, rather than Fourier space, and to their interplay leading to the onset of breaking. The role of superimposed wind is also investigated. The capacity of the wind to affect the breaking onset is minimal unless the wind forcing is very strong. Wind is, however, important as a source of energy for amplification of the wave steepness and ultimately altering the breaking statistics. A detailed laboratory study is subsequently described. The theoretical predictions are verified and quantified. In addition, some features of the nonlinear development not revealed by the model (i.e. reduction of the wave period which further promotes an increase in steepness prior to breaking) are investigated. Physical properties of the incipient breaker are measured and examined, as well as characteristics of waves both preceding and following the breaker. The experiments were performed both with and without a superimposed wind, the role of which is also investigated. Since these idealized two-dimensional results are ultimately intended for field applications, tentative comparisons with known field data are considered. Limitations which the modulational instability mechanism can encounter in real broadband three-dimensional environments are highlighted. Also, substantial examination of existing methods of breaking onset detection are discussed and inconsistencies of existing measurements of breaking rates are pointed out.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 689 ◽  
Author(s):  
S.H. Chen ◽  
H.Y. Cheng ◽  
K.C. Chan ◽  
G. Wang

Metallic glasses (MGs), a new class of advanced structural materials with extraordinary mechanical properties, such as high strength approaching the theoretical value and an elastic limit several times larger than the conventional metals, are being used to develop cellular structures with excellent mechanical-energy-dissipation performance. In this paper, the research progress on the development of MG structures for energy-dissipation applications is reviewed, including MG foams, MG honeycombs, cellular MGs with macroscopic cellular structures, microscopic MG lattice structures and kirigami MG structures. MG structures not only have high plastic energy absorption capacity superior to conventional cellular metals, but also demonstrate great potential for storing the elastic energy during cyclic loading. The deformation behavior as well as the mechanisms for the excellent energy-dissipation performance of varying kinds MG structures is compared and discussed. Suggestions on the future development/optimization of MG structures for enhanced energy-dissipation performance are proposed, which can be helpful for exploring the widespread structural-application of MGs.


1996 ◽  
Vol 34 (1) ◽  
pp. 27
Author(s):  
Sue Yon Shim ◽  
Ki Joon Sung ◽  
Young Ju Kim ◽  
In Soo Hong ◽  
Myung Soon Kim ◽  
...  

2016 ◽  
Vol 2 (2) ◽  
pp. 40
Author(s):  
Miriam Aparicio

This study tests some hypotheses included in the psycho-social-communicational paradigm, which emphasizes the cognitive effects of the media and the role of the psychosocial subject as the recipient


2020 ◽  
pp. 130-135
Author(s):  
D.N. Korotaev ◽  
K.N. Poleshchenko ◽  
E.N. Eremin ◽  
E.E. Tarasov

The wear resistance and wear characteristics of cluster-gradient architecture (CGA) nanostructured topocomposites are studied. The specifics of tribocontact interaction under microcutting conditions is considered. The reasons for retention of high wear resistance of this class of nanostructured topocomposites are studied. The mechanisms of energy dissipation from the tribocontact zone, due to the nanogeometry and the structural-phase structure of CGA topocomposites are analyzed. The role of triboactivated deformation and diffusion processes in providing increased wear resistance of carbide-based topocomposites is shown. They are tested under the conditions of blade processing of heat-resistant titanium alloy.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


2000 ◽  
Vol 75 (4) ◽  
pp. 429-451 ◽  
Author(s):  
Ronald R. King ◽  
Rachel Schwartz

This paper reports the results of an experiment designed to investigate how legal regimes affect social welfare. We investigate four legal regimes, each consisting of a liability rule (strict or negligence) and a damage measure (out-of-pocket or independent-of-investment). The results of the experiment are for the most part consistent with the qualitative predictions of Schwartz's (1997) model; however, subjects' actual choices deviate from the point predictions of the model. We explore whether these deviations arise because: (1) subjects form faulty anticipations of their counterparts' actions and/or (2) subjects do not choose the optimal responses given their anticipations. We find that subjects behave differently under the four regimes in terms of anticipation errors and departures from best responses. For example, subjects playing the role of auditors anticipate investments most accurately under the regime with strict liability combined with out-of-pocket damages, but are least likely to choose the optimal response given their anticipations. This finding implies that noneconomic factors likely play a role in determining subjects' choices.


2020 ◽  
Vol 13 (12) ◽  
pp. e239286
Author(s):  
Kumar Nilesh ◽  
Prashant Punde ◽  
Nitin Shivajirao Patil ◽  
Amol Gautam

Ossifying fibroma (OF) is a rare, benign, fibro-osseous lesion of the jawbone characterised by replacement of the normal bone with fibrous tissue. The fibrous tissue shows varying amount of calcified structures resembling bone and/or cementum. The central variant of OF is rare, and shows predilection for mandible among the jawbone. Although it is classified as fibro-osseous lesion, it clinically behaves as a benign tumour and can grow to large size, causing bony swelling and facial asymmetry. This paper reports a case of large central OF of mandible in a 40-year-old male patient. The lesion was treated by segmental resection of mandible. Reconstruction of the surgical defect was done using avascular fibula bone graft. Role of three-dimensional printing of jaw and its benefits in surgical planning and reconstruction are also highlighted.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


Sign in / Sign up

Export Citation Format

Share Document