scholarly journals Photothermal-Triggered Shape Memory Polymer Prepared by Cross-Linking Porphyrin-Loaded Micellar Particles

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 496 ◽  
Author(s):  
Wangqiu Qian ◽  
Yufang Song ◽  
Dongjian Shi ◽  
Weifu Dong ◽  
Xiaorong Wang ◽  
...  

In this work, we fabricated porphyrin-loaded shape memory polymer (SMP) film by cross-linking micellar particles prepared by co-assembly of porphyrin compounds and amphiphilic macromolecules formulated by copolymerization of 2-butoxy ethanol (BCS), methyl methacrylate (MMA), butyl acrylate (BA) acrylic acid (AA), and diacetone acrylamide (DAAM). The experimental results revealed that this film was able to respond to the red light in terms of photothermal effect enabled by the porphyrin filler. The photothermal-triggered shape memory behaviors of the film were further examined in detail. It was noteworthy that this material was expected to have potential applications in the biomedical field due to the excellent biocompatibility of the porphyrin filler and the red-light source, which was optimal and safe enough for biomedical treatment.

2015 ◽  
Vol 44 (4) ◽  
pp. 224-231 ◽  
Author(s):  
Haibao Lu ◽  
Yongtao Yao ◽  
Long Lin

Purpose – This paper aims to create and to study multifunctional shape memory polymer (SMP) composites having temperature-sensing and actuating capabilities by embedding thermochromic particles within the polymer matrix. Design/methodology/approach – The multifunctional materials were fabricated following a process consisting of blending (of the thermochromic particles and the SMP at various ratios), mixing, degasing, moulding and thermal curing, prepared by incorporating thermochromic particles within the polymer. The effect of the thermochromic particles on the thermomechanical properties and thermally responsive shape memory effect of the resulting multifunction SMP composites were characterised and interpreted. Findings – It was found that exposure of the composites to temperatures above 70°C led to a pronounced change of their colour that was recorded by the thermal and electrical actuation approaches and was reproducibly reversible. It was also found that the colour of the composites was independent of the mechanical state of the SMP. Such effects enabled monitoring of the onset of the set/release temperature of the SMP matrix. Furthermore, the combination of thermochromic additive and the SMP resulted in significantly improved thermomechanical strength, absorption of infrared radiation and the temperature distribution of the SMP composites. Research limitations/implications – The temperature-sensing and actuating capabilities of the polymeric shape memory composites developed through this study will help to extend the field of potential applications of such composites to fields including sensors, actuators, security labels and information dissemination, where colour indication is an advantageous feature. Originality/value – The SMP composites capable of temperature sensing and actuating are novel.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2330
Author(s):  
Tao Xi Wang ◽  
Hong Mei Chen ◽  
Abhijit Vijay Salvekar ◽  
Junyi Lim ◽  
Yahui Chen ◽  
...  

The shape memory effect (SME) refers to the ability of a material to recover its original shape, but only in the presence of a right stimulus. Most polymers, either thermo-plastic or thermoset, can have the SME, although the actual shape memory performance varies according to the exact material and how the material is processed. Vitrimer, which is between thermoset and thermo-plastic, is featured by the reversible cross-linking. Vitrimer-like shape memory polymers (SMPs) combine the vitrimer-like behavior (associated with dissociative covalent adaptable networks) and SME, and can be utilized to achieve many novel functions that are difficult to be realized by conventional polymers. In the first part of this paper, a commercial polymer is used to demonstrate how to characterize the vitrimer-like behavior based on the heating-responsive SME. In the second part, a series of cases are presented to reveal the potential applications of vitrimer-like SMPs and their composites. It is concluded that the vitrimer-like feature not only enables many new ways in reshaping polymers, but also can bring forward new approaches in manufacturing, such as, rapid 3D printing in solid state on space/air/sea missions.


2020 ◽  
Vol 64 (4) ◽  
pp. 425-442
Author(s):  
Mathew J. Haskew ◽  
John G. Hardy

Shape-memory polymers (SMPs) enable the production of stimuli-responsive polymer-based materials with the ability to undergo a large recoverable deformation upon the application of an external stimulus. Academic and industrial research interest in the shape-memory effects (SMEs) of these SMP-based materials is growing for task-specific applications. This mini-review covers interesting aspects of SMP-based materials, their properties, how they may be investigated and highlights examples of the potential applications of these materials.


2019 ◽  
Vol 8 (1) ◽  
pp. 327-351 ◽  
Author(s):  
Ming Lei ◽  
Zhen Chen ◽  
Haibao Lu ◽  
Kai Yu

Abstract Shape memory polymers (SMPs) can be programmed to a temporary shape, and then recover its original shape by applying environmental stimuli when needed. To expands the application space of SMPs, the shape memory polymer composites (SMPCs) were fabricated either to improve the mechanical properties, or to incorporate more stimulus methods. With the deepening of research, the filler arrangement can also be used to reshape the composites from a two dimensional sheet to a three dimensional structure by a strain mismatch. Recently, SMPCs show more and more interesting behaviors. To gain systematic understanding, we briefly review the recent progress and summarize the challenges in SMPCs. We focus on the reinforcement methods and the composite properties. To look to the future, we review the bonding points with the advanced manufacturing technology and their potential applications.


Author(s):  
Xin Wu ◽  
Leonard Dauerman ◽  
Song Zhang ◽  
Xiao Qiao ◽  
Jose Mabesa

In recent years shape memory effect in polymer systems has drawn great attention for its potential applications for MEMS and medical devices. In this paper, the visco-elastic and plastic behavior and strain recovery characteristics of a thermoplastic have been studied extensively. Creep deformation by compression was performed under load or displacement control mode, and under monotonic or cyclic loading. The strain recovery ratio of the shape memory polymer is found to be strongly affected by the deformation temperature, isothermal holding temperature and time, amount of forward strain and relaxation time, and the number of cycles of strain/recovery. The creep behavior of the material is modeled.


Nanophotonics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 123-131 ◽  
Author(s):  
Yan Zuo ◽  
Yerun Gao ◽  
Shiyu Qin ◽  
Zhenye Wang ◽  
De Zhou ◽  
...  

AbstractTwo-dimensional (2D) materials were widely used in sensing owing to the tunable physical or chemical properties. For years, optical sensing attracted a massive amount of attention on account of high accuracy, high security, non-invasive measurement, and strong anti-interference ability. Among the various optical sensing schemes, multi-wavelength optical sensing (MWOS) is an important branch and widely adopted in optical image, spectroscopy, or bio/chemical research. However, no spectral selectivity, limited working wavelength range, or intrinsic instability makes conventional 2D materials unsuitable for MWOS. A new class of 2D materials, known as MXene, exhibits outstanding electronic, optical, and thermal properties, leading to new applications in optical sensing. In this paper, we propose an integrated photothermal optical sensor (PHOS) using Ti3C2Tx MXene films. Thanks to the inherent spectral dependence of Ti3C2Tx MXene over a broadband range, the proposed PHOS can respond to different wavelengths from visible to short-wavelength infrared. Because of the efficient photothermal conversion, the PHOS has a control efficiency up to 0.19 π · mW−1 · mm−1 under 980-nm laser pumping and shows a higher control efficiency under red light (690 nm) irradiation. The measured response time of the proposed PHOS is 23.4 μs. This paper brings MXene into chip-integrated optical sensing fields for the first time and shows the potential applications.


2011 ◽  
Vol 22 (18) ◽  
pp. 2147-2154 ◽  
Author(s):  
Dawei Zhang ◽  
Yanju Liu ◽  
Kai Yu ◽  
Jinsong Leng

The influence of cross-linking agent content on thermomechanical properties and shape recovery behavior of thermoset styrene shape memory polymer (SMP) was investigated in this article. The SMP was polymerized by free radical reaction, with styrene and butyl acrylate as comonomers and divinylbenzene as the cross-linking agent. When the cross-linking agent content is increased from 1 to 4 wt%, the storage modulus and the glass transition temperature ( Tg) of the SMP increased correspondingly. During the glass transition, while the value of damping peak decreased as a result of the addition of the cross-linking agent, the peak width increased, and the main relaxation activation energy increased by 48.6%. When the active temperature was higher than or equal to Tg, the SMP samples containing different weight percentages of the cross-linking agent could recover their original shape. At or above Tg, SMP with varied fractions of cross-linking agent could completely recover its original shape; the recovery rate of SMP increased with the increase in the contents of the cross-linking agent. Below Tg, SMP could not recover its original shape, but the recovery angle increased as the contents of cross-linking agent increased. These results were attributed to the increase of cross-linking densities as a result of the addition of cross-linking agent.


2019 ◽  
Vol 9 (14) ◽  
pp. 2919
Author(s):  
Xin Lan ◽  
Weimin Huang ◽  
Jinsong Leng

Since the shape memory effect (SME) has been confirmed in micron and submicron sized polyurethane (PU) shape memory polymer (SMP), it might be used in novel micro/nano devices even for surgery/operation inside a single cell. In this study, micron sized protrusive PU SMP composite chains are fabricated via mixing ferromagnetic nickel micro powders with PU SMP/dimethylformamide solution and then cured under a low magnetic field. Depending on the amount of nickel content, vertical protrusive chains with a diameter from 10 to 250 µm and height from 200 to 1500 µm are obtained. The SME in these chains is investigated to confirm the SME in SMP composites at microscale. An array of such protrusive chains may be utilized to obtain re-configurable surface patterns in a simple manner for applications, such as remarkable change in wetting and friction ability. Finally, its potential applications for micro electro mechanical systems (MEMS) and biomedical device are proposed.


Sign in / Sign up

Export Citation Format

Share Document