scholarly journals Synthesis and Effect of Encapsulating Rejuvenator Fiber on the Performance of Asphalt Mixture

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1266 ◽  
Author(s):  
Benan Shu ◽  
Shiwen Bao ◽  
Shaopeng Wu ◽  
Lijie Dong ◽  
Chao Li ◽  
...  

The idea of prolonging the service life of asphalt mixture by improving the self-healing ability of asphalt has received extensive attention in recent years. In view of this, this work synthesized three kinds of encapsulating rejuvenator fibers to improve self-healing properties of asphalt mixtures. A series of characterizations were performed to study the morphology, chemical structure and thermal stability of the three kinds of fibers. Subsequently, the road performance of asphalt mixture containing the fiber were investigated, which included high and low temperature, water sensitivity and fatigue performances. Finally, the self-healing performance of asphalt mixture containing the fiber was investigated by 3PB test. The results revealed that the three kinds of encapsulating rejuvenator fibers were successfully synthesized. The fibers had excellent thermal stability, which met temperature requirements in the mixing and compaction process of asphalt mixtures. Road performance of asphalt mixture containing the fiber met the requirements. Self-healing ability of asphalt mixture containing the fiber was improved. Synergistic action of temperature and rejuvenator could further significantly improve the self-healing ability of the asphalt mixture.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 663 ◽  
Author(s):  
Baowen Lou ◽  
Zhuangzhuang Liu ◽  
Aimin Sha ◽  
Meng Jia ◽  
Yupeng Li

Excessive usage of non-renewable natural resources and massive construction wastes put pressure on the environment. Steel slags, the main waste material from the metal industry, are normally added in asphalt concrete to replace traditional aggregate. In addition, as a typical microwave absorber, steel slag has the potential to transfer microwave energy into heat, thus increasing the limited self-healing ability of asphalt mixture. This paper aims to investigate the microwave absorption potentials of steel slag and the effect of its addition on road performance. The magnetic parameters obtained from a microwave vector network analyzer were used to estimate the potential use of steel slag as microwave absorber to heal cracks. Meanwhile, the initial self-healing temperature was further discussed according to the frequency sweeping results. The obvious porous structure of steel slag observed using scanning electron microscopy (SEM) had important impacts on the road performance of asphalt mixtures. Steel slag presented a worse effect on low-temperature crack resistance and water stability, while high-temperature stability can be remarkably enhanced when the substitution of steel slag was 60% by volume with the particle size of 4.75–9.5 mm. Overall, the sustainability of asphalt mixtures incorporating steel slag can be promoted due to its excellent mechanical and microwave absorption properties.


2020 ◽  
Vol 10 (5) ◽  
pp. 1561 ◽  
Author(s):  
Hua Zhao ◽  
Bowen Guan ◽  
Rui Xiong ◽  
Aiping Zhang

This study is focused on the effect of basalt fiber on the road performance of the asphalt mixture. The road performance of asphalt mixture with different dosages of basalt fiber was comprehensively evaluated using Marshall Stability test, the wheel tracking test, the three-point bending beam test and the freezing-thaw splitting test. The road performance of lignin fiber reinforced asphalt mixture and polyester fiber reinforced asphalt mixture also were tested to compare with the road performance of basalt fiber reinforced asphalt mixture. The results showed that basalt fiber can enhance mechanical properties, the low-and high-temperature performance and water sensitivity of the asphalt mixture significantly. Considering the road performance and economic benefits, the appropriate dosage of basalt fiber is about 0.3%. Marshall Stability (MS), dynamic stability (DS), the maximum bending strain and the tensile strength ratio (TSR) of asphalt mixture with 0.3% basalt fiber were increased by 19.6%, 25.5%, 22.2% and 6.0%, respectively. Basalt fiber has certain advantages in improving the low-temperature performance of asphalt mixture by comparison with lignin fiber and polyester fiber.


2012 ◽  
Vol 204-208 ◽  
pp. 1593-1598
Author(s):  
Hong Mei Li ◽  
Wen Fang Liu

In this paper, firstly, based on asphalt pavement central layer, the comparison with the foreign related gradation of asphalt mixtures, one typical kinds of gradations are decided; Secondly, the asphalt aggregate ratio is predicted based on professor Lin’s Theory , and five asphalt aggregate ratio are selected. Finally, the road performance of asphalt mixture is experimented, and the road performance of five asphalt aggregate ratio is analyzed. As a result, we can predict the range of the optimum asphalt aggregate ratio based on the road performance.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2322 ◽  
Author(s):  
Yong Ye ◽  
Shaopeng Wu ◽  
Chao Li ◽  
Dezhi Kong ◽  
Benan Shu

Due to the difference of cooling and treatment processes (rolling method, hot braised method, layer pouring method), basic oxygen furnace (BOF) steel slag can be mainly classified as roller steel slag (RSS), hot braised steel slag (HBSS) and layer pouring steel slag (LPSS). Treatment difference directly results in the performance variations of different BOF steel slag and corresponding asphalt mixtures. The primary purpose of this research was to examine the effects of different cooling and treatment processes on the morphological discrepancy of different BOF steel slag. Also, the road performances of corresponding asphalt mixtures, and mechanism between steel slag performance and road performance were studied. The results show that LPSS owns the largest variability of angular index and texture index, and RSS has the most balanced morphological parameters. The structure of RSS asphalt mixture is advantageous for improving the ability of the asphalt mixture to resist the deformation and enhancing the stability of structure. Higher content of CaO and lower content of SiO2 make the acid-base reaction of RSS asphalt mixture most intense, which contribute to the best road performance of it.


2011 ◽  
Vol 94-96 ◽  
pp. 90-94 ◽  
Author(s):  
Hong Guo Zhang ◽  
Pei Wen Hao ◽  
Xiu Shan Wang

Abstract: This paper mainly studies the application effects of calcium sulfate whisker, a new kind of high-modulus and inorganic-modified material in asphalt mixture. According to the Marshall test, this research designs the ratio of the mixed material, so as to determine the mixed quantity of calcium sulfate whisker. Based on the related studies about road performance, it makes a comparative study among these three mixed materials. The results indicate that the high-modulus asphalt mixture with modified calcium sulfate whisker can effectively improve the mixed materials’ stability in high temperature, water stability and anti-fatigue performance; meanwhile, it doesn’t decrease their performance in low temperature. Therefore, it is helpful to solve the common problems in highway engineering, such as rutting, water damage and so on. The feasibility analysis proves that the application of high-modulus asphalt mixture with modified calcium sulfate whisker could achieve greater economic and social benefits while ensuring the good road performance of the road.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chenfeng Chu ◽  
Jing Zhu ◽  
Zi-ang Wang

AH-30 is a type of high-viscosity matrix asphalt. The asphalt mixture made by AH-30 as a binder has an excellent antirutting performance. However, the other road performance of AH-30 was still worthy of attention. This research aims to reveal the properties of AH-30 and its impact on the road performance of asphalt mixtures (AH30-AC20/25). The AH-70 neat asphalt and SBS modified asphalt were prepared for comparison. The high-temperature sensitivity and fatigue resistance of AH-30 are evaluated by the dynamic shear rheological (DSR) test. The low-temperature performance is evaluated by the bending beam rheometer (BBR) test. The high-temperature stability (HTS) of AH30-AC20/25 is carried out by the wheel tracking (WT) test and the repeated shear constant height (RSCH) test. The low-temperature crack resistance (LTCR) is carried out by the direct stretching (DS) test. The fatigue property is carried out by the three-point bending test. Water stability (WS) is carried out by the Marshall residual stability (MRS) and the intensity ratio of the frozen and melted (IRFM) test. The test results show that the high-temperature resistance of AH-30 is better than that of AH-70. The low-temperature crack resistance of AH-30 is equivalent to that of AH-70. The AH-30 as a binder can meet the requirements of the roads, which are located at a minimum temperature of not less than −10.5°C in winter. The fatigue property of the AH-30 asphalt mixture is poor, which may be one reason why AH-30 asphalt pavement is more prone to cracking. The water stability of the AH30-AC (20/25) asphalt mixture can meet the specification requirements, and AH30-AC20 is better than the other two asphalt mixtures. The research of this paper will provide a basis and reference for the popularization and application of AH-30 in asphalt pavement.


Author(s):  
Pengzhen Lu ◽  
Chenhao Zhou ◽  
Simin Huang ◽  
Yang Shen ◽  
Yilong Pan

Expansion joints are a weak and fragile part of bridge superstructure. The damage or failure of the expansion joint will lead to the decline of bridge durability and endanger the bridge structure and traffic safety. To improve the service life and performance of bridge expansion joints, the ideal method is to use seamless expansion joints. In this study, starting from the commonly used asphalt mixture gradation of seamless expansion joint, and taking into account the actual situation of bridge expansion joint structure and environment in China, the gradation and asphalt-aggregate ratio are preliminarily designed. Through a Marshall test, the corresponding asphalt mixture is evaluated and analyzed according to the stability, flow value, and void ratio, and the optimal gradation and asphalt-aggregate ratio are determined. Finally, the asphalt mixture is prepared with the mixture ratio design, and the test results of an immersion Marshall test, fatigue performance test, and full-scale test verify that the asphalt mixture meets the road performance requirements of seamless expansion joints. On the basis of the experimental data, the performance of large sample asphalt mixture is continuously tested, compared, and optimized. The results show that the asphalt mixture ratio designed is true and reliable, which can provide reference for the optimal design of seamless expansion joint filler.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3306 ◽  
Author(s):  
Marta Skaf ◽  
Emiliano Pasquini ◽  
Víctor Revilla-Cuesta ◽  
Vanesa Ortega-López

Electric arc furnace slag (EAFS) and ladle furnace slag (LFS) are by-products of the electric steelmaking sector with suitable properties for use in bituminous mixtures as both coarse and fine aggregates, respectively. In this research, the production of a porous asphalt mixture with an aggregate skeleton consisting exclusively of electric steelmaking slags (using neither natural aggregates nor fillers) is explored. The test program examines the asphalt mixtures in terms of their mechanical performance (abrasion loss and indirect tensile strength), durability (cold abrasion loss, aging, and long-term behavior), water sensitivity, skid and rutting resistance, and permeability. The results of the slag-mixes are compared with a standard mix, manufactured with siliceous aggregates and cement as filler. The porous mixes manufactured with the slags provided similar results to the conventional standard mixtures. Some issues were noted in relation to compaction difficulties and the higher void contents of the slag mixtures, which reduced their resistance to raveling. Other features linked to permeability and skid resistance were largely improved, suggesting that these mixtures are especially suitable for permeable pavements in rainy regions. In conclusion, a porous asphalt mixture was produced with 100% slag aggregates that met current standards for long-lasting and environmentally friendly mixtures.


2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


2014 ◽  
Vol 525 ◽  
pp. 546-551 ◽  
Author(s):  
Chun Wei Wang ◽  
Fei Wang ◽  
Wen Gang Zhang

In order to discuss the road performance of desulfurized rubber asphalt and mixture, Swelling mechanism of desulfurized rubber asphalt was studied first, and then performance testing of KLMY90#, normal rubber asphalt and desulfurized rubber asphalt were taken, after that, penetration, shear strength and cohesive strength of desulfurized rubber asphalt mortar were test, road performance of desulfurized rubber asphalt mixture were test at last. The results of the study show that, there is no Rubber particle core, but lots of chemical reaction in desulfurized rubber asphalt; the performance of desulfurized rubber asphalt is better than normal rubber asphalt without high viscosity, easy isolation and poor high temperature storage stability; shear strength and cohesive strength of desulfurized rubber asphalt mortar is better; and desulfurized rubber asphalt mixture have good road performance.


Sign in / Sign up

Export Citation Format

Share Document