scholarly journals Age Hardening of Extruded AA 6005A Aluminium Alloy Powders

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2316
Author(s):  
Feijoo ◽  
Cabeza ◽  
Merino ◽  
Pena ◽  
Rey

Pre-alloyed micron-sized 6005A Al alloy (AA 6005A) powders, with a Mg/Si atomic ratio of 0.75, obtained by high pressure inert gas atomization were consolidated by uniaxial cold pressing at 200 MPa into cylindrical Al containers and hot extruded at 450, 480 and 500 °C with an extrusion rate of 7:1, followed by artificial T6 precipitation hardening. Ageing conditions were varied between 170 °C and 190 °C and times of 6, 7 and 8 hours. The microstructure of the extruded profiles was analysed using X-Ray diffractometry (XRD), light optical microscopy (LOM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Differential scanning calorimetry (DSC) was used to study the possible phase transformations. After our results, the peak-aging hardness condition was achieved at 180 °C for 6 h. Mechanical properties of the powder metallurgy (P/M) aluminium alloys consolidated by hot extrusion were superior to those of the extruded profiles of wrought alloy using conventional ingot metallurgy (I/M) billets. AA 6005A wrought P/M alloy via T6 heat treatment shown yield stress of 317 MPa and elongation of 21% at the extrusion pre-heating temperature of 500 °C.

2013 ◽  
Vol 747-748 ◽  
pp. 124-131 ◽  
Author(s):  
Li Yuan Sheng ◽  
Jian Ting Guo ◽  
Chao Yuan ◽  
F. Yang ◽  
G.S. Li ◽  
...  

The Ni3Al and Ni3Al-B-Cr alloys were fabricated by the self-propagation high-temperature synthesis with hot extrusion method. Their microstructure and mechanical properties were studied by using combination of X-ray diffraction, optical microscopy, transmission electron microscopy and compression test. Analysis of X-ray spectra exhibited that the elemental powders had been transformed to the Ni3Al phase after the self-propagation high-temperature synthesis processing. Microstructure examination showed that the alloy without extrusion consisted of coarse and fine grains, but the subsequent hot extrusion procedure homogenized the grain size and densified the alloy obviously. Transmission electron microscopy observations on the Ni3Al alloy revealed that Ni3Al, γ-Ni and Al2O3 particles were the main phases. When the boron and chromium were added, besides the β-NiAl phase, α-Cr phase and some Cr7Ni3 particles with stacking faults inside were observed. In addition, a lot of substructure and high-density dislocation arrays were observed in the extruded part, which indicated that the subsequent extrusion had led to great deformation and partly recrystallizing in the alloy. Moreover, the subsequent extrusion procedure redistributed the Al2O3 particles and eliminated the γ-Ni. These changes were helpful to refine the microstructure and weaken the misorientation. The mechanical test showed that the self-propagation high-temperature synthesis with hot extrusion improved the mechanical properties of the Ni3Al alloy significantly. The addition of B and Cr in Ni3Al alloy increased the mechanical properties further, but the compressive strength of the alloy was still lower than that synthesized by combustion. Finally, the self-propagation high-temperature synthesis with hot extrusion was a good method to prepare Ni3Al alloy from powder.


2009 ◽  
Vol 79-82 ◽  
pp. 2015-2018 ◽  
Author(s):  
Shao Qing Wang ◽  
Hua Shun Yu ◽  
Zhen Ya Zhang ◽  
Guang Hui Min ◽  
Hui Yu

In this study, an ultrastrength Al-10Zn-3.2Mg-2.3Cu alloy was fabricated by powder hot extrusion technique. The microstructures of powder, extruded and subsequently heat treated rods were investigated by means of X-ray diffractometer (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS) for compositional analysis. During extrusion, more MgZn2 compounds were precipitated from the supersaturated Al matrix and observed on the grain boundaries and in the grain interiors. The microstructure of as-extruded alloy is composed of Al matrix and MgZn2 phases in different shapes. After solution treating, the MgZn2 phases were mostly dissolved into matrix and the major constituent are Al7Cu2Fe phase as well as oxides. The mean size of grains was controlled to 2.5μm, and the major precipitates were GP zones and/or η’(MgZn2) phases in the Al matrix after peak-aging (T6) treatment (120°C for 20h). The ultimate tensile strength (σb), yield strength (σ0.2) and elongation (δ) are 745Mpa, 690MPa and 9.0%, respectively.


2016 ◽  
Vol 30 (20) ◽  
pp. 1650263
Author(s):  
Chunwang zhao ◽  
Xiaokai Meng

A Ni[Formula: see text]Ti[Formula: see text]Hf[Formula: see text] film was synthesized through magnetron sputtering followed by crystallization and thermal cycling. Microstructure evolution and phase transformation were investigated through transmission electron microscopy and differential scanning calorimetry. Crystallization can be partially completed when heating temperature was increased to 540[Formula: see text]C, which is higher than the usually thought crystallization temperature of 503.6[Formula: see text]C. After crystallization occurs, the film consists of large Ni–Ti–Hf grains and small granular particles of (Ti,[Formula: see text]Hf)2Ni precipitates dispersed in an amorphous pattern. As the number of thermal cycles increases, crystallization is completed gradually and martensite transformation temperature decreases gradually.


2021 ◽  
Vol 1026 ◽  
pp. 74-83
Author(s):  
Guan Jun Gao ◽  
Xi Wu Li ◽  
Li Zhen Yan

Pre-strain (PS) and pre-aging (PA) treatments are often applied during the preparation of Al-Mg-Si automotive aluminum alloy. In this study, the effect of combined PS and PA on the precipitation behavior and age hardening response for Al-Mg-Si alloys was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), tensile test, Vickers hardness test, and differential scanning calorimetry (DSC). It was found that the dislocations introduced by PS treatment and the cluster (2) formed during PA treatment effectively inhibited the cluster (1), which further strengthened the inhibition of natural aging hardening at room temperature (RT). The strength increment of the alloys was kept below 10.0 MPa during two weeks RT storage. The dislocations provided heterogeneous nucleation for the precipitates forming and the cluster (2) transformed into β″ strengthening phase during bake hardening treatment. With the acceleration response of the dislocations and the cluster (2), the age hardening response of Al-Mg-Si alloys obviously improved with the denser and larger β″ strengthening phase formed.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2101
Author(s):  
Guo-Ai Li ◽  
Zheng Ma ◽  
Jian-Tang Jiang ◽  
Wen-Zhu Shao ◽  
Wei Liu ◽  
...  

The influence of pre-stretch on the mechanical properties of 2219 Al alloys sheets were systematically investigated, with the aim of examining the age-strengthening in parts draw-formed from as-quenched sheets. The precipitation was characterized based on differential scanning calorimetry (DSC) analysis and transmission electron microscope (TEM) observation of specimens of as-quenched and quenched-stretched condition to address the influence of pre-stretching. A tensile test was performed to evaluate the effect on mechanical properties. The introduction of pre-stretching endues increased yield strength (YS) and thus can be helpful to exert the potential of the alloy. Peak YS of 387.5 and 376.8 MPa are obtained when specimens pre-stretched for 10% are aged at 150 and 170 °C, respectively, much higher than that obtained in the non-stretched specimens (319.2 MPa). The precipitation of Guinier-Preston zone (G.P. zones) and the transition to θ″ shifts to a lower temperature when pre-stretched is performed. The high density of dislocations developed during the stretching contributes to the acceleration in precipitation. Quench-stretched specimens present a much quicker age-hardening response at the beginning stage, which endue higher peaked yield strength. The yield strength, however, decrease much more quickly due to the recovery that occurs during the aging processes. The study suggested the feasibility of aging draw-formed components of 2219 Al alloy to obtain high strength.


Author(s):  
J. E. O'Neal ◽  
K. K. Sankaran

Al-Li-Cu alloys combine high specific strength and high specific modulus and are potential candidates for aircraft structural applications. As part of an effort to optimize Al-Li-Cu alloys for specific applications, precipitation in these alloys was studied for a range of compositions, and the mechanical behavior was correlated with the microstructures.Alloys with nominal compositions of Al-4Cu-2Li-0.2Zr, Al-2.5Cu-2.5Li-0.2Zr, and Al-l.5Cu-2.5Li-0.5Mn were argon-atomized into powder at solidification rates ≈ 103°C/s. Powders were consolidated into bar stock by vacuum pressing and extruding at 400°C. Alloy specimens were solution annealed at 530°C and aged at temperatures up to 250°C, and the resultant precipitation was studied by transmission electron microscopy (TEM).The low-temperature (≲100°C) precipitation behavior of the Al-4Cu-2Li-0.2Zr alloy is a combination of the separate precipitation behaviors of Al-Cu and Al-Li alloys. The age-hardening behavior at these temperatures is characteristic of Guinier-Preston (GP) zone formation, with additional strengthening resulting from the coherent precipitation of δ’ (Al3Li, Ll2 structure), the presence of which is revealed by the selected-area diffraction pattern (SADP) shown in Figure la.


Author(s):  
M. Tamizifar ◽  
G. Cliff ◽  
R.W. Devenish ◽  
G.W. Lorimer

Small additions of copper, <1 wt%, have a pronounced effect on the ageing response of Al-Mg-Si alloys. The object of the present investigation was to study the effect of additions of copper up to 0.5 wt% on the ageing response of a series of Al-Mg-Si alloys and to use high resolution analytical electron microscopy to determine the composition of the age hardening precipitates.The composition of the alloys investigated is given in Table 1. The alloys were heat treated in an argon atmosphere for 30m, water quenched and immediately aged either at 180°C for 15 h or given a duplex treatment of 180°C for 15 h followed by 350°C for 2 h2. The double-ageing treatment was similar to that carried out by Dumolt et al. Analyses of the precipitation were carried out with a HB 501 Scanning Transmission Electron Microscope. X-ray peak integrals were converted into weight fractions using the ratio technique of Cliff and Lorimer.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1426
Author(s):  
Tomáš Remiš ◽  
Petr Bělský ◽  
Tomáš Kovářík ◽  
Jaroslav Kadlec ◽  
Mina Ghafouri Azar ◽  
...  

In this work, advanced polymer nanocomposites comprising of polyvinyl alcohol (PVA) and nanodiamonds (NDs) were developed using a single-step solution-casting method. The properties of the prepared PVA/NDs nanocomposites were investigated using Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was revealed that the tensile strength improved dramatically with increasing ND content in the PVA matrix, suggesting a strong interaction between the NDs and the PVA. SEM, TEM, and SAXS showed that NDs were present in the form of agglomerates with an average size of ~60 nm with primary particles of diameter ~5 nm. These results showed that NDs could act as a good nanofiller for PVA in terms of improving its stability and mechanical properties.


2009 ◽  
Vol 12 (1) ◽  
pp. 9 ◽  
Author(s):  
Z.R. Ismagilov ◽  
E.V. Matus ◽  
I.Z. Ismagilov ◽  
M.A. Kerzhentsev ◽  
V.I. Zailovskii ◽  
...  

<p>The structure changes of Mo/ZSM-5 catalysts with different Mo content (2 and 10 wt. % Mo) and Si/Al atomic ratio (17, 30 and 45) during the methane dehydroaromatization have been investigated by X-ray powder diffractometry, N<sub>2</sub> adsorption and transmission electron microscopy. The treatment of Mo/ZSM-5 catalysts in reducing atmosphere (CH<sub>4</sub> or H<sub>2</sub>) at about 700 °C promotes development of mesoporous system. The pores are open to the exterior of the zeolite grain and have an entrance diameter of ~ 4-10 nm. It is proposed that mesopore formation in Mo/ZSM-5 catalyst is connected with the dealumination of zeolite. The mesopore formation in the parent H-ZSM-5 zeolite by NaOH treatment does not improve the activity of /ZSM-5 catalyst.</p>


1991 ◽  
Vol 246 ◽  
Author(s):  
J.A. Horton ◽  
E.P. George ◽  
C.J. Sparks ◽  
M.Y. Kao ◽  
O.B. Cavin ◽  
...  

AbstractA survey by differential scanning calorimetry (DSC) and recovery during heating of indentations on a series of nickel-aluminum alloys showed that the Ni-36 at.% Al composition has the best potential for a recoverable shape memory effect at temperatures above 100°C. The phase transformations were studied by high temperature transmission electron microscopy (TEM) and by high temperature x-ray diffraction (HTXRD). Quenching from 1200°C resulted in a single phase, fully martensitic structure. The initial quenched-in martensites were found by both TEM and X-ray diffraction to consist of primarily a body centered tetragonal (bct) phase with some body centered orthorhombic (bco) phase present. On the first heating cycle, DSC showed an endothermic peak at 121°C and an exothermic peak at 289°C, and upon cooling a martensite exothermic peak at 115° C. Upon subsequent cycles the 289°C peak disappeared. High temperature X-ray diffraction, with a heating rate of 2°C/min, showed the expected transformation of bct phase to B2 between 100 and 200°C, however the bco phase remained intact. At 400 to 450°C the B2 phase transformed to Ni2Al and Ni5Al3. During TEM heating experiments a dislocation-free martensite transformed reversibly to B2 at temperatures less than 150°C. At higher temperatures (nearly 600°C) 1/3, 1/3, 1/3 reflections from an ω-like phase formed. Upon cooling, the 1/3, 1/3, 1/3 reflections disappeared and a more complicated martensite resulted. Boron additions suppressed intergranular fracture and, as expected, resulted in no ductility improvements. Boron additions and/or hot extrusion encouraged the formation of a superordered bct structure with 1/2, 1/2, 0 reflections.


Sign in / Sign up

Export Citation Format

Share Document