scholarly journals Comparative Evaluation of Anticorrosive Properties of Mahaleb Seed Extract on Carbon Steel in Two Acidic Solutions

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3013 ◽  
Author(s):  
Aisha A. Ganash

Aqueous extract solution of Mahaleb seed (ASMS) was prepared using a simple and safe method. ASMS was tested to examine its potential to act as a green corrosion inhibitor for preventing the dissolution of Carbon steel in highly concentrated corrosive 2 M H2SO4 and 2 M H3PO4 using an electrochemical polarization Tafel plot and electrochemical impedance spectroscopy. ASMS provided a slight increase in the inhibition efficiency of H3PO4 (89%) compared with H2SO4 (86%). Fourier transform infrared spectroscopy (FTIR) and electronic scanning microscopy (SEM) were used to prove that adsorption of ASMS occurred on the metal surface. The thermodynamic adsorption and thermodynamic activation parameters were calculated at a range of concentrations and temperatures. The physisorption of ASMS followed the Langmuir adsorption isotherm (R2 = 0.98). Finally, the role of ASMS as a protection mechanism was discussed.

2016 ◽  
Vol 63 (6) ◽  
pp. 470-476 ◽  
Author(s):  
Pawin Wongkhamprai ◽  
Manthana Jariyaboon

Purpose The aim of this work was to investigate how Andrographis paniculata (Burm.f.) Wall.ex Nees extract affected the corrosion of low-carbon (C) steel in 0.1M HCl. Design/methodology/approach The Andrographis paniculata (Burm.f.) Wall.ex Nees was extracted into distilled water at 70°C for 1 h. The corrosion inhibition efficiency of the extract was determined in 0.1M HCl using weight loss measurements, potentiodynamic polarization and electrochemical impedance spectroscopy. The effects of extract concentrations and of temperature were investigated. Findings The Andrographis paniculata (Burm.f.) Wall.ex Nees extract could inhibit the corrosion process of low-C steel in 0.1M HCl. With the extract concentration of 1 g/l, an inhibition efficiency of 96.3 per cent was obtained. The extract acted as an anodic inhibitor. The adsorption process of the extract was physisorption and it followed the Langmuir adsorption isotherm. Originality/value This paper revealed that Andrographis paniculata (Burm.f.) Wall.ex Nees cultivated in Thailand, which was extracted using a simple and environmentally friendly method, could act as a very good green corrosion inhibitor for low-C steel in 0.1M HCl solution.


2019 ◽  
Vol 27 (06) ◽  
pp. 1950154 ◽  
Author(s):  
ILL-MIN CHUNG ◽  
VENKATESAN HEMAPRIYA ◽  
PONNUSAMY KANCHANA ◽  
NATARAJAN ARUNADEVI ◽  
SUBRAMANIAN CHITRA ◽  
...  

Eco-friendly biodegradable Rhododendron schlippenbachii (R. schlippenbachii) green inhibitors, R. schlippenbachii methanolic (RSMeOH) extract, which can effectively reduce low carbon steel corrosion rate, were investigated using weight-loss and electrochemical (electrochemical impedance spectroscopy) techniques. The inhibitors exhibited higher efficiency by retarding the corrosion process in 1[Formula: see text]M H2SO4 and the inhibition efficiency is found to be concentration dependent. The reactivity of the predominant phytochemical components of the extract are analyzed. The adsorption of inhibitors on low carbon steel is followed the Langmuir adsorption. The protective inhibitor film formed on the metal surface was confirmed by SEM and AFM techniques.


2019 ◽  
Vol 27 (07) ◽  
pp. 1950180
Author(s):  
D. KAMELI ◽  
N. ALIOUANE ◽  
H. HAMMACHE-MAKHLOUFI ◽  
L. MAKHLOUFI

The anti-corrosion activity of a newly synthesized ethylene tetra phosphonic acid (ETPA), namely {Ethylenebis [(2-hydroxy-5,1,3-phenylene) bismethylene]} tetraphosphonic acid, against the corrosion of carbon steel in 0.5-M H2SO4 medium and its synergistic effect with Cu[Formula: see text] ions were studied using potentiodynamic polarizations and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization studies indicate that ETPA acts as a mixed-type inhibitor and inhibition efficiency increases with increasing ETPA concentration. The adsorption of ETPA at the surface of carbon steel follows Langmuir adsorption isotherm. EIS results demonstrated the adsorption of ETPA onto the carbon steel surface, leading to the formation of ETPA overlaying film. Addition of [Formula: see text] M Cu[Formula: see text], at low ETPA concentration ([Formula: see text] M), results in significant increase in inhibition efficiency (88%), superior to that obtained at high ETPA concentration (81% at [Formula: see text] M). SEM and EDAX analyses confirmed the existence of a uniform protective film on the electrode surface attributed to ETPA–Cu[Formula: see text] complex formation.


Author(s):  
Nikshith G. Poojary ◽  
Preethi Kumari ◽  
Suma A. Rao

AbstractThe effect of an aromatic hydrazide derivative 4-hydroxyl-N′-[(3-hydroxy-4-methoxyphenyl) methylidene] benzohydrazide] (HMBH) as inhibitor for the corrosion of carbon steel in 0.5 M H2SO4 solution was investigated in the temperature range of 303 K to 323 K using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The concentration of HMBH used was in the range of 0.1 to 1 mM. Inhibition efficiency (% IE) increased with increase in concentration of HMBH and decreased with increase in temperature. Maximum % IE obtained was around 71 with 1 $$\times $$ × 10-3 M HMBH in 0.5 M H2SO4 at 303 K. The Tafel polarization results indicate that HMBH acted as a mixed type of inhibitor. The results of evaluation of thermodynamic and activation parameters suggest the mixed adsorption of HMBH took place by physisorption, and it obeyed Freundlich’s isotherm. Scanning electron microscope (SEM) and atomic force spectroscopy (AFM) images were also recorded to supplement the results of electrochemical studies, and mechanism for corrosion inhibition was suggested.


2019 ◽  
Vol 66 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Walid Belmaghraoui ◽  
Aimad Mazkour ◽  
Hicham Harhar ◽  
Mourad Harir ◽  
Souad El Hajjaji

Purpose This study aims to investigate the corrosion inhibition effect of extracted oil from Ziziphus lotus fruit on corrosion of C38 carbon steel in 5.5 M H3PO4 solution using potentiodynamic polarization and impedance techniques. Design/methodology/approach Oil composition was determined using gas chromatography, and the results showed that oleic and palmitic acids present approximately 84.0 per cent of its total chemical content. Electrochemical impedance spectroscopy (EIS) data were analyzed by adapting it to a well-developed electric circuit model. The inhibition efficiency of Z. lotus oil was calculated and compared using Tafel polarization and EIS. Findings Accordingly, the oil extract was found to act as an anodic type inhibitor. Furthermore, inhibition efficiency of Z. lotus oil extract increase with oil concentrations and achieve approximately 70.5 per cent at 3 g/L solution of Z. lotus oil. Originality/value The results obtained from different tested methods were in line, and the oil was able to reduce significantly the kinetics of the corrosion process of C38 carbon steel.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 168
Author(s):  
N Z. Nor Hashim ◽  
K Kassim ◽  
F H. Zaidon

Two N-substituted thiosemicarbazone derivatives namely as 2-(4-chlorobenzylidene)-N-phenylhydrazinecarbothioamide and 2-benzylidene-N-phenylhydrazinecarbothioamide (L1 and L2, respectively) have been tested as corrosion inhibitors on mild steel in 1 M HCl. The ligands were synthesized and investigated using potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS).  The obtained results indicated that inhibition efficiency, (IE, %) L1 increased with increasing inhibitor concentrations which behaved as a good corrosion inhibitor compared to L2. The synthesized ligands were successfully characterized by melting point, elemental analysis (C, H, N, and S), Fourier-transform infrared spectroscopy (FT-IR) and NMR (1H and 13C) spectroscopy. The excellent inhibition effectiveness for both compounds on mild steel before and after immersion in 1 M HCl solution containing 40 ppm of L1 and L2 were also verified by scanning electron microscope (SEM). Based on potentiodynamic polarization results, it can be concluded that all investigated compounds are mixed-type inhibitors and obey the Langmuir adsorption isotherm. 


MRS Advances ◽  
2017 ◽  
Vol 2 (62) ◽  
pp. 3909-3915
Author(s):  
Héctor M. Barbosa Cásarez ◽  
Araceli Espinoza Vázquez ◽  
Francisco J. Rodríguez-Gomez

AbstractPhenylcoumarin glucoside (4-PC) is a compound extracted from the plant Hintona latiflora and was studied as inhibitor for AISI 1018 steel corrosion in 3% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques, which may find application as eco-friendly corrosion inhibitors. The 4-PC provides inhibitor properties that protect AISI 1018 low carbon steel against corrosion at low concentrations (5 ppm) obtained by EIS. Polarization studies showed that the inhibitor was of mixed type. The inhibition efficiency by the two electrochemical techniques shows similar results. The inhibitor adsorption was demonstrated to be a combined process (physisorption and chemisorption) according to the Langmuir isotherm.


2014 ◽  
Vol 61 (5) ◽  
pp. 300-306 ◽  
Author(s):  
B.P. Markhali ◽  
R. Naderi ◽  
M. Sayebani ◽  
M. Mahdavian

Purpose – The purpose of this paper is investigate the inhibition efficiency of three similar bi-cyclic organic compounds, namely, benzimidazole (BI), benzotriazole (BTAH) and benzothiazole (BTH) on carbon steel in 1 M hydrochloric acid (HCl) solution. Organic inhibitors are widely used to protect metals in acidic media. Among abundant suggestions for acid corrosion inhibitors, azole compounds have gained attention. Design/methodology/approach – The inhibition efficiency of the three organic compounds was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Findings – Superiorities of BTH and BTAH corrosion inhibitors were shown by EIS data and polarization curves. Moreover, the results revealed that BTAH and BTH can function as effective mixed-type adsorptive inhibitors, whereas no inhibition behavior was observed for BI. Both BTAH and BTH obeyed Longmuir adsorption isotherm. The results obtained from this isotherm showed that both inhibitors adsorbed on the specimen surface physically and chemically. The difference in inhibition efficiencies of BTAH, BTH and BI was related to the presence of nitrogen and sulfur hetero atoms on their molecular structures. Originality/value – This study evaluated inhibition efficiency of BI, BTAH and BTH using electrochemical methods. In addition, the study attempted to find inhibition mechanism of the inhibitors and to find modes of adsorption of the inhibitors, correlating effects of heteroatoms and inhibition efficiency.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
J. Ishwara Bhat ◽  
Vijaya D. P. Alva

The corrosion inhibition of mild steel by miconazole nitrate, an antifungal drug has been investigated using potentiodynamic polarization, electrochemical impedance spectroscopy technique, and weight loss methods. The experimental results suggested miconazole nitrate is a good corrosion inhibitor for mild steel in 1 M hydrochloric acid medium. The inhibition efficiency increased with increase in inhibitor concentration. The thermodynamic parameters were determined and discussed. The inhibition was assumed to occur via adsorption of the inhibitor molecule on the surface of mild steel following Langmuir adsorption isotherm.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. Sobhi

The inhibitive action of water extract of naturally occurring Elettaria cardamomum plant against the corrosion of zinc in 1.0 M HCl solution was investigated using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy. From these measurements, it was found that the values of surface coverage (θ) and inhibition efficiency increase with increasing the concentration of the extracted compound. The activation energy of the corrosion was calculated and it was found that the presence of the extracted compound in 1.0 M HCl solutions increases the values of activation energy. The inhibiting effect of this extract results from its adsorption on the electrode surface via the adsorption centers of the compounds present in the extract. The adsorption of this extract compound onto the surface of zinc follows the Langmuir adsorption isotherm. The thermodynamic parameters were calculated for the tested system from the data obtained at different temperatures.


Sign in / Sign up

Export Citation Format

Share Document