scholarly journals Formability of Ultrasonically Additive Manufactured Ti-Al Thin Foil Laminates

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3402 ◽  
Author(s):  
Kaya ◽  
Cora ◽  
Koç

This study investigates the effect of strain rates and temperatures on the mechanical behavior of ultrasonically consolidated Titanium–Aluminum thin foils to understand and characterize their formability. To this goal, laminated composite samples with a distinct number of layers were bonded using ultrasonic consolidation. Then, tensile and biaxial hydraulic bulge tests at different strain rates and temperature conditions were conducted. The effect of the sample orientation on the mechanical response was also examined. Tensile and hydraulic bulge tests results were compared to observe differences in ultimate tensile strength and strain levels under uniaxial and biaxial loading conditions. The effects of loading condition, strain rate, and temperature on the material response were analyzed and discussed on the basis of test results. In general, it was concluded that the maximum elongation values attained were higher for the samples subtracted along the sonotrode movement direction compared to those obtained from the normal to sonotrode movement direction. The elongation was obtained as high as 46% for seven bi-layered samples at high-temperature ranges of 200–300 °C. Hydraulic bulge test results showed that elongation improved as the number of bi-layers increased, yet the ultimate strength values did not change significantly indicating an expansion of the formability window.

Author(s):  
E. A. Kenik ◽  
J. Bentley

Cliff and Lorimer (1) have proposed a simple approach to thin foil x-ray analy sis based on the ratio of x-ray peak intensities. However, there are several experimental pitfalls which must be recognized in obtaining the desired x-ray intensities. Undesirable x-ray induced fluorescence of the specimen can result from various mechanisms and leads to x-ray intensities not characteristic of electron excitation and further results in incorrect intensity ratios.In measuring the x-ray intensity ratio for NiAl as a function of foil thickness, Zaluzec and Fraser (2) found the ratio was not constant for thicknesses where absorption could be neglected. They demonstrated that this effect originated from x-ray induced fluorescence by blocking the beam with lead foil. The primary x-rays arise in the illumination system and result in varying intensity ratios and a finite x-ray spectrum even when the specimen is not intercepting the electron beam, an ‘in-hole’ spectrum. We have developed a second technique for detecting x-ray induced fluorescence based on the magnitude of the ‘in-hole’ spectrum with different filament emission currents and condenser apertures.


Author(s):  
D.I. Potter ◽  
A. Taylor

Thermal aging of Ni-12.8 at. % A1 and Ni-12.7 at. % Si produces spatially homogeneous dispersions of cuboidal γ'-Ni3Al or Ni3Si precipitate particles arrayed in the Ni solid solution. We have used 3.5-MeV 58Ni+ ion irradiation to examine the effect of irradiation during precipitation on precipitate morphology and distribution. The nearness of free surfaces produced unusual morphologies in foils thinned prior to irradiation. These thin-foil effects will be important during in-situ investigations of precipitation in the HVEM. The thin foil results can be interpreted in terms of observations from bulk irradiations which are described first.Figure 1a is a dark field image of the γ' precipitate 5000 Å beneath the surface(∿1200 Å short of peak damage) of the Ni-Al alloy irradiated in bulk form. The inhomogeneous spatial distribution of γ' results from the presence of voids and dislocation loops which can be seen in the bright field image of the same area, Fig. 1b.


Author(s):  
S. McKernan ◽  
C. B. Carter

The oxidation of natural olivine has previously been performed on bulk samples and the reactions followed by preparation of TEM specimens from the annealed material. These results show that below ∼1000°C hematite and amorphous silica are formed, particularly around dislocations. At higher temperatures magnetite and some enstatite-like phase are formed. In both cases the olivine is left almost totally Fe depleted. By performing the oxidation on characterized thin TEM specimens it is possible to obtain more information on the nucleation and growth of the second phases formed. The conditions in a thin foil, however, are very different from those in the bulk especially with regard to surface effects. The nucleation of precipitates in particular may be expected to occur differently in these thin foils than in the bulk.TEM specimens of natural olivine (approximate composition Mg+Fe+Si2o4) which had been annealed at 1000°C for 1 hr were prepared by mechanical polishing and dimpling, followed by Ar ion milling to perforation. The specimens were characterized in the electron microscope and then heated in air in alumina boats to 900°C for between 30 and 180 minutes.


Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


Author(s):  
Shaosen Ma ◽  
Guangping Huang ◽  
Khaled Obaia ◽  
Soon Won Moon ◽  
Wei Victor Liu

The objective of this study is to investigate the hysteresis loss of ultra-large off-the-road (OTR) tire rubber compounds based on typical operating conditions at mine sites. Cyclic tensile tests were conducted on tread and sidewall compounds at six strain levels ranging from 10% to 100%, eight strain rates from 10% to 500% s−1 and 14 rubber temperatures from −30°C to 100°C. The test results showed that a large strain level (e.g. 100%) increased the hysteresis loss of tire rubber compounds considerably. Hysteresis loss of tire rubber compounds increased with a rise of strain rates, and the increasing rates became greater at large strain levels (e.g. 100%). Moreover, a rise of rubber temperatures caused a decrease in hysteresis loss; however, the decrease became less significant when the rubber temperatures were above 10°C. Compared with tread compounds, sidewall compounds showed greater hysteresis loss values and more rapid increases in hysteresis loss with the rising strain rate.


2017 ◽  
Vol 898 ◽  
pp. 753-757
Author(s):  
Le Le Gui ◽  
Tong Xu ◽  
Bin An Shou ◽  
Han Kui Wang ◽  
Jing Xiang

The fracture toughness tests and a new miniature specimen technology named hydraulic bulge test (HBT) of 3Cr1Mo1/4V at four service time were carried out. Four J-R resistance curves by single-specimen method with one inch CT specimens were obtained to compute the JIC. Different definitions of equivalent fracture strain according to the section morphologies of HBT testing specimens were compared, and fracture energy of miniature specimens with three different thicknesses (0.4mm, 0.5mm and 0.6mm) were also calculated. Results showed that the typical HBT load-deflection curve can be divided into four sections like SPT curve. Equivalent fracture strain and fracture energy EHB can be chosen as two fracture parameters for the HBT specimen. Ductile fracture toughness JIC can be related approximately linearly to both the equivalent fracture strain and fracture energy EHB.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 961-967
Author(s):  
Xiaomin Li ◽  
Jianrong Zhang

Abstract A quasi-static tensile test was performed on a 1.4 mm-thick TRIP780 steel strip with welding points. An MTS810 material test machine was used in the test, and a Split Hopkinson tension bar device was used in performing impact stretch loading at different strain rates. The dynamic tensile stress–strain curve of the spot welding material with different strain rates was obtained through the finely designed Hopkinson rod test, and the strain rate dependence of a TRIP780 steel spot welding material was discussed. According to the dynamic constitutive equation of the TRIP780 steel spot welding material, the test results were numerically simulated, the constitutive description and test curves were compared, and the simulation results and test results were discussed and analyzed. The fractures of the test recovery specimen were scanned with the scanning electron microscope, and the fracture mechanism of the TRIP780 steel spot welding material was explored by observing the fractures. The surfaces of the fractures surface showed obvious cleavage river patterns, and the evolution process of microcracks was determined and used in characterizing brittle fractures in specimen spot welding sample subjected to dynamic stretch loading.


2006 ◽  
Vol 128 (4) ◽  
pp. 477-488 ◽  
Author(s):  
A. Chakraborty ◽  
S. Gopalakrishnan

A new spectral plate element (SPE) is developed to analyze wave propagation in anisotropic laminated composite media. The element is based on the first-order laminated plate theory, which takes shear deformation into consideration. The element is formulated using the recently developed methodology of spectral finite element formulation based on the solution of a polynomial eigenvalue problem. By virtue of its frequency-wave number domain formulation, single element is sufficient to model large structures, where conventional finite element method will incur heavy cost of computation. The variation of the wave numbers with frequency is shown, which illustrates the inhomogeneous nature of the wave. The element is used to demonstrate the nature of the wave propagating in laminated composite due to mechanical impact and the effect of shear deformation on the mechanical response is demonstrated. The element is also upgraded to an active spectral plate clement for modeling open and closed loop vibration control of plate structures. Further, delamination is introduced in the SPE and scattered wave is captured for both broadband and modulated pulse loading.


2013 ◽  
Vol 50 (3) ◽  
pp. 275-287 ◽  
Author(s):  
Yingbo Zhang ◽  
Kaare Höeg ◽  
Weibiao Wang ◽  
Yue Zhu

The coefficient of permeability of hydraulic asphalt concrete is in the range 10−8–10−10 cm/s. Laboratory test results show that triaxial specimens in axial compression can undergo axial strains up to 18% without any significant increase in permeability until approaching the compressive strength. For temperatures between 5 and 20 °C and strain rates between 2 × 10−3%/s and 5 × 10−3%/s, conventional hydraulic asphalt concrete can tolerate 1%–3% tensile strains before cracking in direct tension tests and strains up to 3%–4% in bending. At 20 °C the tensile and bending strains at cracking are 2–4 times higher than those at 0 °C, and at −20 °C they are approximately 0.2% and 0.8%, respectively. Asphalt concrete possesses pronounced crack self-healing properties. In the experiments, the crack leakage rate dropped 1–4 orders of magnitude within a few hours and the cracked specimens regained 55% of the intact tensile strength after only 1 day of self-healing. In summary, the comprehensive series of laboratory tests documents that asphalt concrete has characteristics that make the material extremely well suited for use in impervious barriers in dams, and the test results reported herein can be of great use in barrier design.


Sign in / Sign up

Export Citation Format

Share Document