scholarly journals Temperature, Pressure, and Velocity Influence on the Tribological Properties of PA66 and PA46 Polyamides

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3452 ◽  
Author(s):  
Mihai Tiberiu Lates ◽  
Radu Velicu ◽  
Cornel Catalin Gavrila

The tribological properties of PA66, PA46, and PTFE-mixed PA46 were investigated. The tests were achieved on a pin-on-disc tribometer. Before tests with different sets of parameters, a running-in-type test (with constant parameters) was performed for all the materials, under lubricated and dry conditions. The tests parameters were variable referring on load, velocity, and temperature. The results are referring on the value of the wear developed during the run-in period and on the variation of friction coefficient with the testing parameters. The results show that the PTFE-mixed PA46 polyamide has better tribological properties than the PA66 and the PA46 polyamide.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 635 ◽  
Author(s):  
Fang Han ◽  
Huaixing Wen ◽  
Jianjian Sun ◽  
Wei Wang ◽  
Yalong Fan ◽  
...  

This paper concerns a comparative study on the tribological properties of Si3N4-10 vol% hBN bearing on GCr15 steel under seawater lubrication and dry friction and fresh-water lubrication by using a pin-on-disc tribometer. The results showed that the lower friction coefficient (around 0.03) and wear rate (10−6 mm/Nm) of SN10/GCr15 tribopair were obtained under seawater condition. This might be caused by the comprehensive effects of hydrodynamics and boundary lubrication of surface films formed after the tribo-chemical reaction. Despite SN10/GCr15 tribopair having 0.07 friction coefficient in the pure-water environment, the wear mechanismsits were dominated by the adhesive wear and abrasive wear under the dry friction conditions, and delamination, plowing, and plastic deformation occured on the worn surface. The X-ray photoelectron spectroscopy analysis indicated that the products formed after tribo-chemaical reaction were Fe2O3, SiO2, and B2O3 and small amounts of salts from the seawater, and it was these deposits on the worn surface under seawater lubrication conditions that, served to lubricate and protect the wear surface.


2015 ◽  
Vol 75 (11) ◽  
Author(s):  
N. Nuraliza ◽  
S. Syahrullail ◽  
M.N. Musa

The use of vegetable oil-based lubricant as a lubricant in various applications has increased and it is eyed by the industry due to its superior tribological properties, besides possessing the potential to replace petroleum-based lubricants. Palm olein is one of alternative lubricants that could be suitable and attractive as a lubricant to be studied due to its advantages and large production in the country. Thus, in this study, the behavior of palm olein characteristics was investigated by using pin-on-disc experiment, in which a hemispherical pin was loaded against the rotating grooved disc. The experiments via sliding were performed with pin-on-disc tester using pure aluminum as the material for hemispherical pin and SKD11 for disc. The test was implemented by dropping continuous flow of palm olein as lubricating oil on sliding surface at different loads applied, which were 10N, 50N, and 100N. The wear rate of the pin and the friction coefficient were also investigated. Moreover, the surface roughness before and after the experiment was analyzed as well. All the results obtained were compared to hydraulic oil and engine oil-SAE 40. From the analysis, the friction coefficient acquired from lubricated with palm olein was the lowest for both conditions. The wear rate obtained for the three lubricants increased from 10N to 100N load for palm oil, but decreased for hydraulic and engine oil-SAE 40. Meanwhile, the wear rate obtained for lubrication with hydraulic oil showed the lowest value compared to Engine oil-SAE 40 and double fractionated palm olein. 


Tribologia ◽  
2018 ◽  
Vol 279 (3) ◽  
pp. 107-111
Author(s):  
Anita PTAK ◽  
Piotr KOWALEWSKI

For the polymeric materials, changing of the temperature causes changes in mechanical and tribological properties of sliding pairs. The goal of the present study was to determine the change in Young's modulus and kinetic friction coefficient depending of the temperature. Three thermoplastic polymers, PA6, PET and PEEK, were tested. These materials cooperated in sliding motion with a C45 construction steel disc. As part of the experiment, the Young's modulus tests (by 3-point bending method) and kinetic friction coefficient studies (using pin-on-disc stand) were carried out. The temperature range of mechanical and tribological tests was determined at T = –50°C±20°C. Comparing the results of mechanical and tribological properties, there is a tendency to decrease the coefficient of friction as the Young's modulus increases while reducing the working temperature.


Author(s):  
Xianghua Zhan ◽  
Peng Yi ◽  
Yancong Liu ◽  
Peifa Xiao ◽  
Xiaoye Zhu ◽  
...  

Textural morphology is an important factor influencing dry friction, and few studies have been conducted regarding the effects of single- and multi-shape textures on dry tribological properties. In this work, six types of textures including single- and multi-shape textures were produced on 40Cr steel samples by using a nanosecond laser. Reciprocating sliding tests under dry friction were conducted using a pin-on-disc friction tester. The influences of textured surfaces with different textures on tribological properties were investigated. Results showed that tribological properties were affected by different textural morphologies. The dimple-textured surface had the highest friction coefficient, followed by the groove-textured surface. The sinusoidal-textured surface had the lowest friction coefficient. The friction coefficients of multi-shape textured surfaces were lower than those of non-textured surfaces but higher than those of sinusoidal-textured surfaces. The wear properties of the tested surfaces were consistent with the friction-coefficient results. The sinusoidal- and sinusoidal–groove-textured surfaces can be considered as the optimum choices for dry reciprocating friction.


2007 ◽  
Vol 124-126 ◽  
pp. 1601-1604 ◽  
Author(s):  
Yeon Wook Kim ◽  
Hee Jung Kim ◽  
Hyun Myung Shin

One of the most important use of thermal spray coatings is for wear resistance. In this work, the tribological properties of plasma prayed Al83.7Fe7Cr6.3Ti3 quasicrystalline coatings have been studied. The quasicrystal powders of Al-base alloys were produced by gas atomization unit in vacuum. The plasma spray process was used to produce quasicrystalline coatings. Then, friction experiments were carried out on a pin-on-disc-type tribometer. The results indicated that the friction coefficient of Al83.7Fe7Cr6.3Ti3 quasicrystalline coating is about 50% lower than that of Al70Fe13Cu10Cr7 quasicrystalline coating.


2010 ◽  
Vol 13 (1-2) ◽  
pp. 49
Author(s):  
L.M. Manocha ◽  
Guddu Prasad ◽  
S. Manocha

Carbon fibers have been used as additional reinforcing fibers to improve the mechanical and tribological properties of phenolic resin-based ceramic-carbon composites. The composites comprising ceramic particulates such as Silicon carbide, Boron carbide of 1-30 micron size as reinforcement and phenolic resin as matrix carbon precursor were prepared by compaction method followed by carbonization to 1000 °C in inert atmosphere. Experimental results indicate that carbonization results in decrease in thickness and weight, the amount of reduction increasing with addition of carbon fibers results in compact high density composites. Composites comprising of 10 wt. % fibers exhibited maximum hardness, compressive strength and density after  carbonization. Tribological properties of the composites were evaluated against Cr6 ball using a pin-on-disc Tribometer with different linear speed, sliding distance and load conditions. It was found that the composites filled with lower amount of carbon fibers showed relatively higher friction coefficient value. Also, it was noted that friction coefficient increases with increase in the applied load (1N, 2N and 5N) and linear speed.


Lubricants ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 9
Author(s):  
Ahmed Nabhan ◽  
Ahmed Rashed ◽  
Nouby M. Ghazaly ◽  
Jamil Abdo ◽  
M. Danish Haneef

The tribological properties of Lithium grease specimens with different concentrations of Al2O3 nanoparticles were investigated using a pin on disc apparatus under different sliding speeds and normal loads. Results showed that Al2O3 nanoparticles enhanced the tribological properties of lithium grease and reduced the COF and wear scar width by approximately 57.9% and 47.5% respectively.


Author(s):  
Ying Yan ◽  
Xuelin Lei ◽  
Yun He

The effect of nanoscale surface texture on the frictional and wear performances of nanocrystalline diamond films under water-lubricating conditions were comparatively investigated using a reciprocating ball-on-flat tribometer. Although the untreated nanocrystalline diamond film shows a stable frictional state with an average friction coefficient of 0.26, the subsequent textured films show a beneficial effect on rapidly reducing the friction coefficient, which decreased to a stable value of 0.1. Furthermore, compared with the nanocrystalline diamond coating, the textured films showed a large decreasing rate of the corresponding ball wear rate from 4.16 × 10−3 to 1.15 × 10−3 mm3/N/m. This is due to the fact that the hydrodynamic fluid film composed of water and debris can provide a good lubrication environment, so the entire friction process has reached the state of fluid lubrication. Meanwhile, the surface texture can greatly improve the hydrophilicity of the diamond films, and as the texture density increases, the water contact angle decreases from 94.75° of the nanocrystalline diamond film to 78.5° of the textured films. The proper textured diamond film (NCD90) exhibits superior tribological properties among all tested diamond films, such as short run-in period, low coefficient of friction, and wear rate.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 660
Author(s):  
Dariusz Jędrzejczyk ◽  
Elżbieta Szatkowska

The analyzed topic refers to the wear resistance and friction coefficient changes resulting from heat treatment (HT) of a hot-dip zinc coating deposited on steel. The aim of research was to evaluate the coating behavior during dry friction after HT as a result of microstructure changes and increase the coating hardness. The HT parameters should be determined by taking into consideration, on the one hand, coating wear resistance and, on the other hand, its anticorrosion properties. A hot-dip zinc coating was deposited in industrial conditions (according EN ISO 10684) on disc-shaped samples and the chosen bolts. The achieved results were assessed on the basis of tribological tests (T11 pin-on-disc tester, Schatz®Analyse device, Sindelfingen, Germany), microscopic observations (with the use of optical and scanning microscopy), EDS (point and linear) analysis, and microhardness measurements. It is proved that properly applied HT of a hot-dip zinc coating results in changes in the coating’s microstructure, hardness, friction coefficient, and wear resistance.


2010 ◽  
Vol 654-656 ◽  
pp. 2763-2766 ◽  
Author(s):  
Li Wen Mu ◽  
Xin Feng ◽  
Yi Jun Shi ◽  
Huai Yuan Wang ◽  
Xiao Hua Lu

The tribological properties of polyimide (PI) composites reinforced with graphite or MoS2 sliding in liquid alkali and water as well as dry friction were investigated using a ring-on-ring tester. The results show that the friction coefficient (μ) and wear rate (W) for both graphite/PI and MoS2/PI composites in different liquid mediums are μdry>μwater >μalkali and Wwater>Wdry >Walkali. Results also indicate that the friction coefficient and wear rate of the PI composites filled with different solid lubricants are μMoS2 >μgraphite and W MoS2 >Wgraphite in different liquid mediums. In addition, the hydrophobic inorganic fillers are fit for the reinforcement of polymer-based composites sliding in liquid mediums. It is also concluded from the authors’ work that the wear rate and friction coefficient of polymer-based (such as PI, PTFE) composites in the alkali lubricated conditions is lowest among all the friction conditions. This may be attributed to the ionic hydration in the alkaline solution.


Sign in / Sign up

Export Citation Format

Share Document