scholarly journals Does the Carbon Fibre Coating Reinforcement Have an Influence on the Bearing Capacity of High-Performance Self-Compacting Fibre-Reinforced Concrete?

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4054
Author(s):  
Krzysztof Ostrowski

This study investigated the impact of the location of a carbon fibre coated reinforcement ring (CFCRr) inside the structure of high-performance self-compacting fibre-reinforced concrete (HPSCFRC). Nowadays, cement matrix is considered as an alternative binder when reinforcing concrete structures with composite materials. Due to the plastic behavior of composite structures at relatively low temperatures when carbon fibres are reinforced with epoxy resin, the author attempted to locate carbon fibres inside a concrete structure. Thanks to this, the reinforcement will be less vulnerable to high temperatures (during a fire) and more compatible with concrete. The fibres act as a perimeter reinforcement that is compatible with the concrete mixture. The position of the CFCRr in the structure of concrete has an influence on the load capacity, stiffness and stress-strain behavior of concrete elements. The research was conducted on circular shape short concrete columns and tested under axial compression. The results demonstrated that by including CFCRr inside a concrete specimen, the maximum compressive strength decreases with an increase in the number of composite rings and a greater distance from the vertical axis of symmetry to the edge of the element. It has been proven in these studies that carbon fibres do not have good adhesive properties between CFCRr and a concrete mixture. As a result of this phenomenon, a shear surface is created, which leads to crack propagation along the CFCRr. Therefore, the presented idea of an internal CFCRr should not be used when designing new concrete structures.

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1372 ◽  
Author(s):  
Krzysztof Ostrowski ◽  
Łukasz Sadowski ◽  
Damian Stefaniuk ◽  
Daniel Wałach ◽  
Tomasz Gawenda ◽  
...  

When understanding the effect of the morphology of coarse aggregate on the properties of a fresh concrete mixture, the strength and deformability of self-compacting high-performance fibre-reinforced concrete (SCHPFRC) can be seen to be critical for its performance. In this research, regular and irregular grains were separated from granite coarse aggregate. The morphology of these grains was described while using digital image analysis. As a result, the aspect ratio, roundness and area ratio were determined in order to better understand this phenomenon. Then, the principal rheological, physical, and mechanical properties of SCHPFRC were determined. The obtained results indicated that the morphology of the grains of coarse aggregate has an impact on the strength and stiffness properties of SCHPFRC. Moreover, significant differences in the transverse strain of concretes were observed. The morphology of the coarse aggregate also has an impact on the rheological parameters of a fresh concrete mixture. To better understand this phenomenon, the hypothesized mechanism of the formation of SCHPFRC caused by different morphology of coarse aggregate was proposed at the end of the article.


2014 ◽  
Vol 20 (3) ◽  
pp. 380-379 ◽  
Author(s):  
Adam Zofka ◽  
Miglė Paliukaitė ◽  
Audrius Vaitkus ◽  
Dominika Maliszewska ◽  
Ramandeep Josen ◽  
...  

This paper presents a study on the effects of casting procedure and resulting fibre orientation on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). To investigate the impact of fibre orientation in the UHPFRC specimens, three approaches were employed. First, densities were measured from the top, middle and bottom zones of the cylinders to observe physical changes as the function of cylinder height. Secondly, two engineering fracture tests were performed in both compression and tension, and a comparison of fracture energies was conducted between different cylinder zones. While previous studies have explored the influence of steel fibres on the UHPFRC performance, the Semi-Circular Bending (SCB) and Disc Compact Tension (DCT) experimental setups have not yet been used in the UHPFRC fracture testing. Lastly, samples from different zones were scanned using X-ray computer tomography (X-ray CT). Both visual and digital image analysis of the X-ray scans were conducted in order to observe fibre orientation pattern changes within different zones. Although density calculations showed insignificant differences between different zones, fracture testing exhibited significant differences through the testing process as well as through fracture energy computations. Furthermore, X-ray CT demonstrated considerable differences in spatial fibre orientation with respect to two uniquely defined angles.


2013 ◽  
Vol 486 ◽  
pp. 295-300 ◽  
Author(s):  
Petr Máca ◽  
Petr Konvalinka ◽  
Manfred Curbach

This paper describes mixture formulation of Ultra High Performance Fibre Reinforced Concrete (UHPFRC) with 2% of fibres by volume and its response to quasi-static and dynamic impact loading. The UHPFRC mixture was prepared using locally available constituents and no special curing or mixing methods were used for its production. In addition, the mechanical parameters of three other types of concrete, i.e. normal strength concrete (NSC), fibre reinforced concrete (FRC) and high performance concrete (HPC) is compared. The main properties assessed throughout the experimental work are compressive, flexural and direct tensile strength as well as response of tested concretes to impact flexural loading. The impact loading is produced by a vertically falling weight of 24 kg from the height of 1 m on concrete prisms. The strain rate increase corresponds to low-velocity impacts such as vehicle crash or falling rocks. Compressive strength of UHPFRC exceeded 130 MPa and its direct tensile strength was 10.3 MPa. This type of concrete also exhibited strain hardening both in flexure under quasi-static conditions and during impact. Based on the comparison of impact reactions, it was concluded that the resistance of UHPFRC to impact loading is superior compared to the referent types of concretes (NSC, FRC, HPC).


2019 ◽  
Vol 10 (2) ◽  
pp. 251-265 ◽  
Author(s):  
Petr Konrád ◽  
Radoslav Sovják

Research presented in this article is aimed to investigate the ability of ultra-high-performance fibre-reinforced concrete to absorb and dissipate mechanical energy at elevated strain rate loading. Specimens made of ultra-high-performance fibre-reinforced concrete were subjected to the low-velocity impact using the new testing procedure where no fixed supports that hold the sample during the impact were applied. The fibre volume fraction of the ultra-high-performance fibre-reinforced concrete was set as the main test variable in the framework of this study and the volumetric fraction of fibres was ranging from 0.125% to 2%. A high-speed camera was used to measure velocities of the impactor and the ultra-high-performance fibre-reinforced concrete specimen before and after the impact. Consequently, the energy dissipated by the ultra-high-performance fibre-reinforced concrete specimen during the impact was calculated using a simple energy balance equation. To determine the basic material properties of ultra-high-performance fibre-reinforced concrete, quasi-static loading rate was applied and conventional methods were used. A significant difference between the values of dissipated energies for different loading rates and various fibre volumetric fractions was observed. It can be noted that the new procedure shows a reasonable approach for testing the fibre-reinforced cementitious composites under localized impact loading and is worthy of further optimization.


2012 ◽  
Vol 4 (2) ◽  
pp. 67-75
Author(s):  
Vigantas Antanas Žiogas ◽  
Svajūnas Juočiūnas ◽  
Violeta Medelienė ◽  
Giedrius Žiogas

The exploitation time and reliability of monolithic reinforced concrete structures largely depend on concreting technology and process influence during concreting and early setting stages. Different types of cracks in monolithic reinforced concrete structures appear due to internal and external effects. Cracks appear when the technology of structure concreting is damaged, when formwork is removed during the further setting and structures loaded period. In order to avoid micro and macro cracks in monolithic structures, it is important to measure the particular setting time moment and technological process moment when stresses that exceed the permissible values appear in concrete. The article analyses the processes that appear when horizontal, sloping and vertical monolithic reinforced concrete structures are concreted. The analysis of concrete mixture pressure on formwork is performed. The pressure which is calculated according to different countries’ methodology is different: the smallest pressure is obtained calculating according to the British recommendations, and the largest pressure is obtained according to French CIB recommendations. In Lithuania, it is recommended to follow the German DIN 18218 standard. The balance conditions of concrete mixture concreting on slope surface are described. The main concreting technology parameters and their interaction are analysed; the speed, intensity and time of continuous concreting technology are presented. When the process of continuous concreting is performed, it is necessary to evaluate the interaction and values of parameters properly. Methodical theoretical calculation is presented. Practical solutions for industrial building construction applying the modern sliding formwork technology are presented. The impact of cement type, superplasticizers and temperature over the concrete mixture mobility, changes, fresh concrete structural strength and concrete setting kinetics are analysed. The main characteristics of the initial setting — the beginning of structure formation, when concrete mixture turns into concrete state — is analysed applying the ultrasonic method. The beginning of structure formation influences the regulated time of concrete mixture laying and compaction. The requirements for structural strength (permissible strength limits) and concreting rate (formwork movement) of freshly formed concrete are set when the construction is performed applying the continuous concreting technology method. The analysis is implemented performing the construction of cylindrical sludge tank with slipping formwork. While performing the analysis during concreting, it was stated that the concrete setting kinetics corresponds to the sludge tank concreting rate. The analysis performed after concreting and in 28 days of hardening revealed that there are no surface defects or cracks, and concrete strength exceeds the required sludge tank design strength. Santrauka Monolitinių gelžbetoninių statinių konstrukcijų eksploatacijos trukmė ir patikimumas daugiausia priklauso nuo betonavimo technologijos ir procesų poveikių betonavimo bei pradinio kietėjimo metu. Straipsnyje nagrinėjami procesai, vykstantys betonuojant horizontaliąsias, nuožulniąsias ir vertikaliąsias monolitines gelžbetonines konstrukcijas. Atlikta betono mišinio slėgio į formas analizė. Tiriami pagrindiniai betonavimo technologijos parametrai, analizuojamas jų ryšys, pateikiamas nepertraukiamo betonavimo technologijos betonavimo greitis, intensyvumas, trukmė. Atlikti teoriniai skaičiavimai ir siūlomi praktiniai sprendimai pramoninių statinių statybai, naudojant šiuolaikinę slankiųjų klojinių technologiją. Ištirta cemento tipo, superplastiklių, temperatūros įtaka šviežiai suformuoto betono struktūriniam stipriui ir betono kietėjimo kinetikai. Nustatyti reikalavimai šviežiai suformuoto betono struktūriniam stipriui, betonavimo greičiui (klojinių kėlimui), vykdant statybą nepertraukiamos betonavimo technologijos metodu. Tyrimai pritaikyti vykdant cilindrinio dumblo pūdytuvo statybą slankiaisiais klojiniais.


2017 ◽  
Vol 36 (3) ◽  
pp. 697-704
Author(s):  
MN Isa

Strengthening of concrete structures have become inevitable due to unavoidable factors such as fatigue and aggressive environmental conditions causing deterioration of concrete structures. Many researchers have turned in the direction of using various high strength and high performance concretes due to their high structural and durability properties, for the purpose of repair and strengthening of concrete structures against these aggressive conditions. As a result, this study carryout experimental, numerical and analytical investigation to study the behaviour of plain concrete (PC) beams strengthened with High Performance Fibre Reinforced Concrete (HPFRC) layer using three different jacketing configurations and tested in flexure. Results show significant improvement in both stiffness and load bearing capacity of plain concrete beams. http://dx.doi.org/10.4314/njt.v36i3.6


Sign in / Sign up

Export Citation Format

Share Document