Experimental procedure for determination of the energy dissipation capacity of ultra-high-performance fibre-reinforced concrete under localized impact loading

2019 ◽  
Vol 10 (2) ◽  
pp. 251-265 ◽  
Author(s):  
Petr Konrád ◽  
Radoslav Sovják

Research presented in this article is aimed to investigate the ability of ultra-high-performance fibre-reinforced concrete to absorb and dissipate mechanical energy at elevated strain rate loading. Specimens made of ultra-high-performance fibre-reinforced concrete were subjected to the low-velocity impact using the new testing procedure where no fixed supports that hold the sample during the impact were applied. The fibre volume fraction of the ultra-high-performance fibre-reinforced concrete was set as the main test variable in the framework of this study and the volumetric fraction of fibres was ranging from 0.125% to 2%. A high-speed camera was used to measure velocities of the impactor and the ultra-high-performance fibre-reinforced concrete specimen before and after the impact. Consequently, the energy dissipated by the ultra-high-performance fibre-reinforced concrete specimen during the impact was calculated using a simple energy balance equation. To determine the basic material properties of ultra-high-performance fibre-reinforced concrete, quasi-static loading rate was applied and conventional methods were used. A significant difference between the values of dissipated energies for different loading rates and various fibre volumetric fractions was observed. It can be noted that the new procedure shows a reasonable approach for testing the fibre-reinforced cementitious composites under localized impact loading and is worthy of further optimization.

2014 ◽  
Vol 20 (3) ◽  
pp. 380-379 ◽  
Author(s):  
Adam Zofka ◽  
Miglė Paliukaitė ◽  
Audrius Vaitkus ◽  
Dominika Maliszewska ◽  
Ramandeep Josen ◽  
...  

This paper presents a study on the effects of casting procedure and resulting fibre orientation on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). To investigate the impact of fibre orientation in the UHPFRC specimens, three approaches were employed. First, densities were measured from the top, middle and bottom zones of the cylinders to observe physical changes as the function of cylinder height. Secondly, two engineering fracture tests were performed in both compression and tension, and a comparison of fracture energies was conducted between different cylinder zones. While previous studies have explored the influence of steel fibres on the UHPFRC performance, the Semi-Circular Bending (SCB) and Disc Compact Tension (DCT) experimental setups have not yet been used in the UHPFRC fracture testing. Lastly, samples from different zones were scanned using X-ray computer tomography (X-ray CT). Both visual and digital image analysis of the X-ray scans were conducted in order to observe fibre orientation pattern changes within different zones. Although density calculations showed insignificant differences between different zones, fracture testing exhibited significant differences through the testing process as well as through fracture energy computations. Furthermore, X-ray CT demonstrated considerable differences in spatial fibre orientation with respect to two uniquely defined angles.


2013 ◽  
Vol 486 ◽  
pp. 295-300 ◽  
Author(s):  
Petr Máca ◽  
Petr Konvalinka ◽  
Manfred Curbach

This paper describes mixture formulation of Ultra High Performance Fibre Reinforced Concrete (UHPFRC) with 2% of fibres by volume and its response to quasi-static and dynamic impact loading. The UHPFRC mixture was prepared using locally available constituents and no special curing or mixing methods were used for its production. In addition, the mechanical parameters of three other types of concrete, i.e. normal strength concrete (NSC), fibre reinforced concrete (FRC) and high performance concrete (HPC) is compared. The main properties assessed throughout the experimental work are compressive, flexural and direct tensile strength as well as response of tested concretes to impact flexural loading. The impact loading is produced by a vertically falling weight of 24 kg from the height of 1 m on concrete prisms. The strain rate increase corresponds to low-velocity impacts such as vehicle crash or falling rocks. Compressive strength of UHPFRC exceeded 130 MPa and its direct tensile strength was 10.3 MPa. This type of concrete also exhibited strain hardening both in flexure under quasi-static conditions and during impact. Based on the comparison of impact reactions, it was concluded that the resistance of UHPFRC to impact loading is superior compared to the referent types of concretes (NSC, FRC, HPC).


2016 ◽  
Vol 56 (4) ◽  
pp. 328-335 ◽  
Author(s):  
Filip Vogel ◽  
Ondřej Holčapek ◽  
Petr Konvalinka

Generally, cement composites like high-performance concrete (HPC) are very brittle. The resistance to the impact loading of the HPFRC and the HPFRC reinforced by the textile reinforcement are compared in this article. The samples (0.56 × 0.1 × 0.1 m) were experimentally tested in three-point bending, by using horizontal impact machine. The better resistance of the textile reinforced HPFRC is obvious from the collected data (impact force, acceleration of hammer and acceleration of the tested sample).


2021 ◽  
Vol 250 ◽  
pp. 06007
Author(s):  
Martina Drdlová ◽  
Martin Šperl

In order to apply the ultra-high-performance fibre-reinforced concrete (UHPFRC) in the constructions of ballistic protective structures, the impact resistance of UHPFRC has been investigated experimentally by conducting the high-speed projectile penetration tests. 5 mixtures with basalt and corundum aggregates with various grain size have been prepared and subjected to the quasi-static and 7.62 x 54R B32 API projectile impact load using the striking velocity of 850 m/s. The influence of the strength, size and material of the aggregate on the projectile impact resistance represented by differential efficiency factor (DEF), structural integrity and area and height of impact crater has been evaluated. The superior projectile resistance of UHPFRC with corundum has been observed. Regarding the size of the aggregates, the incorporation of coarser aggregates brings better projectile impact resistance.


2021 ◽  
Vol 352 ◽  
pp. 00005
Author(s):  
Radoslav Sovják ◽  
Josef Fládr ◽  
Jiří Šťástka ◽  
Michal Frydrýn

This paper presents experimental testing of various types of concrete under impact loading by using a 2.8-second drop shaft. The drop shaft is located in the Josef Underground Laboratory and allows dropping a projectile from 40 meters that results in a maximal velocity of 100 km/h. Three basic types of concrete were used in the framework of this study. This was normal strength concrete, fibre-reinforced concrete, and high-performance fibre-reinforced concrete. The slabs were constructed 1700 mm × 500 mm × 70 mm in size and the clear span of the impacted slab was 1500 mm. Damage of the slab was recorded and the velocity of the projectile was measured with the high-speed camera before and after the impact. It was demonstrated that high-performance fibre-reinforced concrete has a higher ability to absorb and dissipate the kinetic energy of the impact that their lower strength counterparts.


Sign in / Sign up

Export Citation Format

Share Document