scholarly journals Performance Characterization of Semi-Flexible Composite Mixture

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 342 ◽  
Author(s):  
Weiguang Zhang ◽  
Shihui Shen ◽  
Ryan Douglas Goodwin ◽  
Dalin Wang ◽  
Jingtao Zhong

Semi-flexible composite mixture (SFCM) is developed based on a unique material design concept of pouring cement mortar into the voids formed by open graded asphalt mixture. It combines the flexibility of asphalt concrete and the stiffness of Portland cement concrete and has many advantages comparing to conventional roadway paving materials. The main objective of this paper was to evaluate the engineering properties of SFCM and assess the constructability of the SFCM. A slab SFCM sample was fabricated in the laboratory to simulate the filling of cement mortar in the field. Performance testing was carried out by indirect tensile (IDT) test because it was found to be able to correlate with the field performance of asphalt mixtures at low, intermediate, and high temperatures. They were used in this study to evaluate the thermal cracking, fatigue, rutting, as well as moisture resistance of SFCM. A control hot mix asphalt (HMA) mixture was used to compare with the results of SFCM. Based on the testing results, it was found that the designed SFCM showed good filling capability of cement mortar. SFCM had higher dynamic modulus than the control HMA. It had good resistance to rutting and moisture damage. Based on fracture work, SFCM showed better resistance to thermal cracking while lower resistance to fatigue cracking.

Author(s):  
Amir Golalipour ◽  
Varun Veginati ◽  
David J. Mensching

In the asphalt materials community, the most critical research need is centered around a paradigm shift in mixture design from the volumetric process of the previous 20-plus years to an optimization procedure based on laboratory-measured mechanical properties that should lead to an increase in long-term pavement performance. This study is focused on advancing the state of understanding with respect to the value of intermediate temperature cracking tests, which may be included in a balanced mix design. The materials included are plant-mixed, laboratory-compacted specimens reheated from the 2013 Federal Highway Administration’s (FHWA’s) Accelerated Loading Facility (ALF) study on reclaimed asphalt pavement/reclaimed asphalt shingle (RAP/RAS) materials. Six commonly discussed intermediate temperature (cracking and durability) performance testing (i.e., Asphalt Mixture Performance Tester [AMPT] Cyclic Fatigue, Cantabro, Illinois Flexibility Index Test [I-FIT], Indirect Tensile Cracking [ITC, also known as IDEAL-CT], Indirect Tensile Nflex, and Texas Overlay Test) were selected for use in this study based on input from stakeholders. Test results were analyzed to compare differences between the cracking tests. In addition, statistical analyses were conducted to assess the separation among materials (lanes) for each performance test. Cyclic fatigue and IDEAL-CT tests showed the most promising results. The ranking from these two tests’ index parameters matched closely with ALF field performance. Furthermore, both showed reasonable variability of test data and they were successful in differentiating between different materials.


Author(s):  
Maria Carolina Rodezno ◽  
Kamil E. Kaloush ◽  
George B. Way

The purpose of this study is to assess the way distresses are predicted by using the new Mechanistic–Empirical Design of New and Rehabilitated Pavement Structures (design guide), developed under NCHRP Project 1–37A. Two pavement sections were used: a conventional hot-mix asphalt reconstruction and an asphalt–rubber overlay on a portland cement concrete (PCC) pavement. The design guide does not include rehabilitation design for asphalt–rubber overlays. However, many large-scale asphalt–rubber overlays on interstate highways in Arizona have been built and monitored for performance, providing an opportunity to determine to what degree the design guide can predict their performance. The input data for both types of pavements were derived from two different projects on the same highway, Interstate 40. The actual data measurements that summarize the pavement performance were compared with calculated values obtained by using the design guide. Three pavement performance parameters were evaluated on the basis of the available data: rutting, cracking, and international roughness index (IRI). Rutting was one of the distresses that the design guide predicted more accurately. The fatigue cracking prediction, evaluated with Level-3 data input, was not accurate; future analysis should consider calibrated fatigue models for the different mixtures. The predicted IRI results differed from the actual measured field performance because of inaccurate distress prediction. The Arizona experience using asphalt–rubber overlays to rehabilitate aged PCC pavements has been successful. For that reason, a calibration process that allows the use of the asphalt–rubber mixtures in the design guide should be considered in the future.


2019 ◽  
Vol 6 (2) ◽  
pp. b1-b7
Author(s):  
M. R. Islam ◽  
S. A. Kalevela ◽  
J. A. Rivera ◽  
T. B. Rashid

This study investigates the dynamic modulus of cold-in-place recycling (CIR) asphalt material and its performance using pavement performance data and laboratory dynamic modulus testing. Colorado Department of Transportation (CDOT) has 37 projects with over 8 million square yards using CIR materials. Sites from ten projects were selected to monitor the performances and collect samples for laboratory testing. Dynamic modulus testing on the CIR cores was conducted by the CDOT. Results show measured distresses of CIR rehabilitation techniques are mostly below the threshold values during the service period. International Roughness Index, rutting, and transverse cracking never exceeded the threshold values during the studied period. Only two CIR pavements exceeded the threshold values for fatigue cracking after 8-10 years of service. Measured distresses of CIR rehabilitation techniques are similar to conventional pavements based on engineering judgment. The laboratory dynamic modulus test results show CIR has about 50 % less dynamic modulus compared to the traditional asphalt mixture. Keywords: asphalt pavement, cold-in-place recycling, dynamic modulus, fatigue cracking, transverse cracking.


Author(s):  
Thomas Bennert ◽  
Edwin Haas ◽  
Edward Wass

In recent years, there has been a growing interest in incorporating performance testing during the mixture design and quality control testing of asphalt mixtures. The move toward utilizing performance related specifications (PRS) and balanced mixture design concepts have pushed the need for asphalt mixture performance testing to the forefront. Numerous researchers have proposed a variety of laboratory tests that have showed promise at predicting asphalt mixture performance, yet most of these test methods are never adopted due to a number of issues often cited by the asphalt industry: (1) equipment cost; (2) equipment/test method complexity; and (3) time/labor effort required. The research presented here summarizes the effort to evaluate the indirect tensile test (IDT) as a potential performance indicator for hot-mix asphalt that can be easily utilized during quality control testing at an asphalt plant. Utilizing the same test equipment and basic procedure, both high-temperature rutting and intermediate-temperature fatigue cracking can be evaluated in a timely manner. Comparison testing to more standardized and accepted rutting and fatigue cracking test methods have shown excellent agreement, indicating that the suite of IDT tests have potential for adoption within a quality control testing program. Examples of criteria are given utilizing the New Jersey Department of Transportation’s (NJDOT) PRS.


Author(s):  
Shuai Yu ◽  
Shihui Shen ◽  
Hai Huang ◽  
Cheng Zhang

Considerable variation in the vertical displacement can cause railway tracks’ transition problems at the bridge approach. The vertical displacement gaps can result in amplification of the dynamic force and frequency, and gradually degrade the serviceability of the railway track. Many strategies, focusing on either modifying the track component or making changes to the entire structure, were used to mitigate transition problems. In particular, asphalt concrete underlayment as a structural adjustment method provides additional support to the ballast and protects the subgrade. However, its effect of reducing dynamic impact at the bridge approach is limited because asphalt mixture has a limited range of modulus and cannot make enough adjustments to the entire structure. Therefore, this paper aims to develop an engineered semi-flexible composite mixture (SFCM) design to mitigate the transition problem. The experiment showed that SFCM is a viscoelastic material with a wider modulus range, and its modulus can adjust with its air voids and the concrete slurry content. Track analysis using a 2.5D sandwich model was conducted to simulate the effects of the structure and material on the responses of the railway track under the dynamic loads and determine the arrangement of the transition zone. A four-segment transition zone design was eventually proposed for a special case of bridge approach. This method can be used to develop transition zones for achieving a smooth transition at the bridge approaches.


Author(s):  
Behnam Jahangiri ◽  
Punyaslok Rath ◽  
Hamed Majidifard ◽  
William G. Buttlar

Various agencies have begun to research and introduce performance-related specifications (PRS) for the design of modern asphalt paving mixtures. The focus of most recent studies has been directed toward simplified cracking test development and evaluation. In some cases, development and validation of PRS has been performed, building on these new tests, often by comparison of test values to accelerated pavement test studies and/or to limited field data. This study describes the findings of a comprehensive research project conducted at Illinois Tollway, leading to a PRS for the design of mainline and shoulder asphalt mixtures. A novel approach was developed, involving the systematic establishment of specification requirements based on: 1) selection of baseline values based on minimally acceptable field performance thresholds; 2) elevation of thresholds to account for differences between short-term lab aging and expected long-term field aging; 3) further elevation of thresholds to account for variability in lab testing, plus variability in the testing of field cores; and 4) final adjustment and rounding of thresholds based on a consensus process. After a thorough evaluation of different candidate cracking tests in the course of the project, the Disk-shaped Compact Tension—DC(T)—test was chosen to be retained in the Illinois Tollway PRS and to be presented in this study for the design of crack-resistant mixtures. The DC(T) test was selected because of its high degree of correlation with field results and its excellent repeatability. Tailored Hamburg rut depth and stripping inflection point thresholds were also established for mainline and shoulder mixes.


2021 ◽  
Vol 13 (6) ◽  
pp. 3005
Author(s):  
Jiangang Yang ◽  
Chen Sun ◽  
Wenjie Tao ◽  
Jie Gao ◽  
Bocheng Huang ◽  
...  

In this study, the compaction characteristics of recycled hot-mix asphalt (RHMA) were evaluated using the void content (VV), compaction energy index (CEI), slope of accumulated compaction energy (K), and lock point (LP). Then, the effects of the compaction parameters, including the gradation of the RHMA, reclaimed asphalt pavement (RAP) content, temperature of gyrations, and number of gyrations, on the compaction characteristics of RHMA were investigated. An orthogonal experiment was designed and the data collected were analyzed via range analysis; then, a regression model was generated relying on a quadratic polynomial. Furthermore, the regression model was used for the comparison and prediction of the mixture’s compactability during the material design. Finally, the compaction mechanism of RHMA was discussed from the perspective of the void content of RAP particles. The results showed that a finer aggregate gradation, a higher gyration temperature, a greater number of gyrations, and a higher RAP content were effective for increasing the compactability of RHMA. The range analysis results suggest that the gradation of RHMA has the greatest influence on compactability, followed by the RAP content. The RAP aggregate cannot diffuse to a new mixture completely, so the remained RAP particle reduces the void content of RHMA. Therefore, a higher RAP content up to 50% can help RHMA to achieve the designed void content with higher efficiency.


2016 ◽  
Vol 700 ◽  
pp. 238-246 ◽  
Author(s):  
Dewi Sri Jayanti ◽  
Ramadhansyah Putra Jaya ◽  
Siti Aspalaili Mohamd Sharif ◽  
Norhidayah Abdul Hassan ◽  
Siti Nur Amiera Jeffry ◽  
...  

This study investigated the effects of adding various percentages of styrene–butadiene rubber (SBR) on the engineering properties and performance of asphaltic concrete. SBR was added into the mixture at 0%, 1%, 3%, and 5% on a mass-to-mass basis. Conventional bitumen used in this study was 80/100 PEN. The performances of SBR on the asphalt mixture properties were evaluated based on Marshall Stability, abrasion loss, resilient modulus, and dynamic creep test. Results indicated an improvement in the engineering properties and performance with the addition of SBR content. For instance, stability increased by 18.8% as the SBR content increased from 0% to 5%. Dynamic creep stiffness also increased by 46.2%. Similarly, the resilient modulus was also found to increase by approximately 84.6%.


Author(s):  
Anjaly M.

ABSTRACT Traffic is increasing day by day due to increased vehicle ownership and infrastructure development. As the modern highway transportation has high speed, high traffic density, heavy load and channelized traffic, bituminous concrete is subjected to various types of distress such as rutting, fatigue cracking and raveling. Fatigue cracking occurs because bituminous layers are weak in tension. Therefore reinforcement of the bituminous mixes is one approach to improve tensile strength. Natural fibers can be used for reinforcing as a substitute for synthetic fibers due to their lower cost, ecological recycling and low specific gravity. Among natural fibers growing attention is being paid to coir fiber due to its easy availability, good wearing resistance and more durable property. Also rutting along wheel path causes vehicle hydroplaning during rainy seasons due to loss of skid resistance. As well as water accumulated over the longitudinal depressions damages bond between binder and aggregates. Therefore there is a need for a durable mix which can increase the service life of pavement thus reduces life cycle cost. This study is about use of coir fiber in pavement construction to improve the performance characteristics of the asphalt mixture being used. Stone matrix asphalt mixture is a rut resistant and durable mix which is reinforced with coir fiber and tested for various performance characteristics. Coir fiber is a sustainable material which can be used for rutting resistant mixture.   Keywords: Stone matrix asphalt, Coir fiber, rutting


Sign in / Sign up

Export Citation Format

Share Document