scholarly journals Effect of Er on Microstructure and Mechanical Properties of 5052 Aluminum Alloy with Big Width-To-Thickness Ratio

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 568
Author(s):  
Xinwei She ◽  
Xianquan Jiang ◽  
Bao Qi ◽  
Kang Chen

The effect of Er on microstructure and mechanical properties of the 5052 aluminum alloy with a big width-to-thickness ratio was investigated by a metallurgical microscope, scanning electron microscope and tensile testing machine. The results showed that the precipitates were slightly refined after Er addition and Al3Fe was transformed into Al6Fe and AlEr with/without a small amount of Fe or Si. The effect of Er on grain refinement was related to its content. When Er content was lower or higher than 0.4%, the grain would coarsen. Homogenization could refine the grain by controlling Er content and distribution in the Al matrix. Long time homogenization at high temperature would significantly reduce the strength of the 5052 aluminum alloy and 5052 aluminum alloys with low Er content, but help to improve the plasticity of those with high Er content. The ultimate tensile strength, yield strength and elongation of the as-cast 5052 aluminum alloy were 197 MPa, 117 MPa and 22.5% respectively. The strength was the highest, when Er content was 0.4 wt. % and the elongation was the best at 0.1 wt. % Er content.

2017 ◽  
Vol 904 ◽  
pp. 15-18
Author(s):  
Bo Bo Meng ◽  
Quan An Li ◽  
Xiao Ya Chen

The effects of heat treatment on microstructure and mechanical properties of Mg-9Gd-4Y-0.5Zr alloy were studied by XRD, OM, SEM and tensile testing machine. The results show that the alloy mainly consists of α-Mg matrix, Mg5Gd and Mg24Y5. Through solid solution and aging heat treatment process, the tensile strength, yield strength and elongation rate respectively achieves 263.1MPa, 235.2MPa and 3.11%.


2021 ◽  
Vol 1035 ◽  
pp. 114-118
Author(s):  
Chang Liang Shi ◽  
Yan Ping Niu ◽  
Yi Min Lin ◽  
Quan Hu ◽  
Xin Zhang

The effects of coarse-grained ring on the mechanical properties and cutting performance of 2011 aluminum alloy extruded bars were studied by metallographic microscope, scanning electron microscope, tensile testing machine and high-speed lathe. The results show that the microstructure of aluminum alloy extruded bar was composed of α-Al phase, Al7Cu2Fe phase, CuAl2 phase and SnBi eutectic phase. There was a coarse-grained ring in the aluminum alloy extruded bar. The coarse-grained ring reduced the mechanical properties and cutting performance of the aluminum alloy extruded bar. The aluminum alloy extruded bar with a diameter of 30 mm had a coarse-grained ring depth of 9 mm and lower mechanical properties, whose the tensile strength was 287.9 MPa, the elongation was 17%, the cutting performance was poor and the chips were long. The aluminum alloy extruded bar with a diameter of 40 mm had a coarse-grained ring depth of 1 mm, higher mechanical properties and better cutting performance, whose the tensile strength was 394.5 MPa, the elongation was 23.5%, the chips were fine and uniform.


2014 ◽  
Vol 590 ◽  
pp. 181-186
Author(s):  
Xiao Song Li ◽  
An Hui Cai ◽  
Ji Jie Zeng

Using optical microscope, electronic tensile testing machine, scanning electron microscopy methods, such as detailed treatment of the B hypoeutectic Al-Si alloy microstructure, mechanical properties and fracture morphology were studied. The results showed that after treatment by the B refinement, α-Al dendrite phase was refined, resulting in mechanical properties of Al-Si alloy significantly improved. Which, B content 0.036wt.%, the alloy the best, the σb, δ, respectively, than the non-thinning increased 67.8% and 15.2%. From the fracture surface, the fracture morphology of the specimen showed a quasi-cleavage fracture. Which, B content 0.036wt.% at the time of fracture is more deep dimples, and a good plastic toughness.


2010 ◽  
Vol 97-101 ◽  
pp. 361-364
Author(s):  
R.Y. Zhang ◽  
S.W. Yu ◽  
K.H. Zhang ◽  
F.C. Wang

7A09 aluminum alloy is served as an important structural material in many fields. In this paper, power spinning of semi-continuous casting 7A09 aluminum alloy tube blank was carried out, and the effects of process parameters, such as spinning temperature and roller feeding ratio, on spinnability were analyzed, further the mechanical property was tested on a tensile testing machine. The results show that: at 300°C and 1.2mm/r roller feeding ratio, semi-continuous casting 7A09 aluminum alloy tube blank has good spinnability; after spun, the yield strength is increased 44%, and elongation is increased 130%.


2017 ◽  
Vol 898 ◽  
pp. 711-718 ◽  
Author(s):  
Cheng He ◽  
Bao Liang Shi ◽  
Wen Sheng Li ◽  
Jian Ping Zhao ◽  
Kai Xu ◽  
...  

The influence of long time service on the microstructure and high temperature mechanical properties of T23 steel was studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and tensile testing machine. Results showed that lathy bainite ferrite disappears with the increasing service time, both the size and number of the carbides increases, and M23C6 carbides transform into M6C carbides rich in W element. The service process also has a significant influence on the recovery. Sub-grains were found at the grain boundaries with little dislocations in the matrix after 27448 h service time. After running for 27448 h the microstructure degradation of T23 steel is serious. High temperature tensile properties of T23 are closely related to the alloy aging degree. The reasons for the decrease of high temperature mechanical properties after long time service included microstructure degradations such as the increase of both the size and quantity of M23C6 carbides, the transformation of M23C6 to M6C, the desolution of Cr,W,and Mo elements, the decrease of the dislocation density and the occurrence of the sub-grains.


2019 ◽  
Vol 57 (3A) ◽  
pp. 11 ◽  
Author(s):  
Khanh Cong Huynh

Type 6201 aluminium alloy wires are produced by drawing 4.7 mm diameter billet-on-billet extruded redraw rod down to 2.7 mm diameter wires. Before drawing, the first group of redraw rod coils was annealed at 480oC for 4 hours to reduce the hardness of the redraw rod. The second group of redraw rod coils was drawn without annealing. With each group of redraw rod, after drawing, some wire coils were solution heat treated, then artificially aged or naturally aged. The other wire coils were artificially aged or naturally aged without solution heat treatment. Mechanical properties of the wires were assessed by a tensile testing machine (model UTM-1000)With suitable aging temperature and aging time, wires produced from each group of redraw rod coils with or without solution heat treatment attain tensile requirements of ASTM B398, but wires produced with solution heat treatment attain higher elongation than wires produced without solution heat treatment.


2018 ◽  
Vol 37 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Ma Kun ◽  
Liu Tingting ◽  
Liu Ya ◽  
Su Xuping ◽  
Wang Jianhua

AbstractThe tensile properties of the alloy 2618 and 2618-Ti were tested using a tensile testing machine. The morphologies of the fracture of tensile samples were observed using scanning electron microscopy. The strengthening and toughening mechanisms of alloy 2618-Ti at elevated temperature were systematically investigated based on the analyses of experimental results. The results showed that the tensile strength of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 250 and 300 °C. But the elongation of alloy 2618-Ti is much higher than that of alloy 2618 at the temperature range of 200 and 300 °C. The equal-strength temperature of intragranular and grain boundary of alloy 2618-Ti is about 235 °C. When the temperature is lower than 235 °C, the strengthening of alloy 2618-Ti is ascribed to the strengthening effect of fine grains and dispersed Al3Ti/Al18Mg3Ti2 phase. When the temperature is higher than 235 °C, the strengthening effect of alloy 2618-Ti is mainly attributed to the load transfer of Al3Ti and Al18Mg3Ti2 particles. The toughening of alloy 2618-Ti at elevated temperature is mainly ascribed to the fine grain microstructure, excellent combination between matrix and dispersed Al3Ti/Al18Mg3Ti2 particles as well as the recrystallization of the alloy at elevated temperature.


2010 ◽  
Vol 654-656 ◽  
pp. 194-197
Author(s):  
Wei Fen Li ◽  
Wei Niu ◽  
Zhi Ming Hao ◽  
Ming Hai Li

Experiments of tensile mechanical properties of steel 0Cr18Ni9 are done on the MTS 810 tensile testing machine, and the temperature range is from 20°C to 1200°C. The stress vs. strain curves are obtained. Results show that the elastic modulus, yield stress and tensile strength decrease with increasing temperature .Based on the experiment results, the functions of the elastic modulus, yield strength and tensile strength versus temperature are represented by polynomial.


2014 ◽  
Vol 789 ◽  
pp. 290-296 ◽  
Author(s):  
Hua Qing Lai ◽  
Sheng Lu

5052 aluminum alloy and galvanized Q235 steel sheets with thickness of 1mm were lap welded/brazed by cold metal transfer technology (CMT) with ER4043 as the filler wire and Pb foil as the brazing flux. Scanning electron microscope (SEM), microscope with super-depth, X-ray diffraction (XRD), electronic universal tensile testing machine and hardness tester were employed to study the microstructure and mechanical properties of the joint. The results indicate that Pb foil effectively improved the mechanical properties of the joint with tensile strength up to 160Mpa which is higher than that of the joint without the brazing flux of Pb foil. Intermetallic compound (IMC) layer in the brazing joint unequally distributed in the interface of aluminum alloy and galvanized steel. The thickness of IMC layer was about 1~3.5um. The main phases of the IMC layer were FeAl and AlFe6Si. Fine equiaxial crystals existed in the weld metal while columnar crystals existed in the fusion zone of aluminum alloy. The hardness of fusion zone was higher than base metal while the hardness of heat affected zone was lower than base metal. In most case, the lap joint was broken in the junction of base metal and fusion zone.


Sign in / Sign up

Export Citation Format

Share Document