scholarly journals Bioactive Properties of Nanofibres Based on Concentrated Collagen Hydrolysate Loaded with Thyme and Oregano Essential Oils

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1618 ◽  
Author(s):  
Mariana Daniela Berechet ◽  
Carmen Gaidau ◽  
Aleksandra Miletic ◽  
Branka Pilic ◽  
Maria Râpă ◽  
...  

This research aimed to obtain biocompatible and antimicrobial nanofibres based on concentrated collagen hydrolysate loaded with thyme or oregano essential oils as a natural alternative to synthesis products. The essential oils were successfully incorporated using electrospinning process into collagen resulting nanofibres with diameter from 471 nm to 580 nm and porous structure. The presence of essential oils in collagen nanofibre mats was confirmed by Attenuated Total Reflectance -Fourier Transform Infrared Spectroscopy (ATR-FTIR), Ultraviolet–visible spectroscopy (UV–VIS) and antimicrobial activity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy analyses allowed evaluating the morphology and constituent elements of the nanofibre networks. Microbiological tests performed against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans showed that the presence of essential oils supplemented the new collagen nanofibres with antimicrobial properties. The biocompatibility of collagen and collagen with essential oils was assessed by in vitro cultivation with NCTC clone 929 of fibroblastic cells and cell viability measurement. The results showed that the collagen and thyme or oregano oil composites have no cytotoxicity up to concentrations of 1000 μg·mL−1 and 500 μg mL−1, respectively. Optimization of electrospinning parameters has led to the obtaining of new collagen electrospun nanofibre mats loaded with essential oils with potential use for wound dressings, tissue engineering or protective clothing.

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2124
Author(s):  
Giulia Vanti ◽  
Ekaterina-Michaela Tomou ◽  
Dejan Stojković ◽  
Ana Ćirić ◽  
Anna Rita Bilia ◽  
...  

Food poisoning is a common cause of illness and death in developing countries. Essential oils (EOs) could be effective and safe natural preservatives to prevent and control bacterial contamination of foods. However, their high sensitivity and strong flavor limit their application and biological effectiveness. The aim of this study was firstly the chemical analysis and the antimicrobial evaluation of the EOs of Origanum onites L. and Satureja thymbra L. obtained from Symi island (Greece), and, secondly, the formulation of propylene glycol-nanovesicles loaded with these EOs to improve their antimicrobial properties. The EOs were analyzed by GC-MS and their chemical contents are presented herein. Different nanovesicles were formulated with small average sizes, high homogeneity, and optimal ζ-potential. Microscopic observation confirmed their small and spherical shape. Antibacterial and antifungal activities of the formulated EOs were evaluated against food-borne pathogens and spoilage microorganisms compared to pure EOs. Propylene glycol-nanovesicles loaded with O. onites EO were found to be the most active formulation against all tested strains. Additionally, in vitro studies on the HaCaT cell line showed that nanovesicles encapsulated with EOs had no toxic effect. The present study revealed that both EOs can be used as alternative sanitizers and preservatives in the food industry, and that their formulation in nanovesicles can provide a suitable approach as food-grade delivery system.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2223 ◽  
Author(s):  
Elaine Pereira dos Santos ◽  
Pedro Henrique Medeiros Nicácio ◽  
Francivandi Coêlho Barbosa ◽  
Henrique Nunes da Silva ◽  
André Luís Simões Andrade ◽  
...  

Film-forming emulsions and films, prepared by incorporating different concentrations of clove essential oil (CEO) and melaleuca essential oil (MEO) into chitosan (CS) were obtained and their properties were evaluated. Film-forming emulsions were characterized in terms of qualitative assessment, hydrogen potential and in vitro antibacterial activity, that was carried by the agar diffusion method, and the growth inhibition effects were tested on the Gram-positive microorganism of Staphylococcus aureus, Gram-negative microorganisms of Escherichia coli, and against isolated fungi such as Candida albicans. In order to study the impact of the incorporation of CEO and MEO into the CS matrix, the appearance and thickness of the films were evaluated. Furthermore, Fourier transform infrared spectroscopy (FTIR), contact angle measurements, a swelling test, scanning electron microscopy and a tensile test were carried out. Results showed that the film-forming emulsions had translucent aspect with cloudy milky appearance and showed antimicrobial properties. The CEO had the highest inhibition against the three strains studied. As regards the films’ properties, the coloration of the films was affected by the type and concentration of bioactive used. The chitosan/CEO films showed an intense yellowish coloration while the chitosan/MEO films presented a slightly yellowish coloration, but in general, all chitosan/EOs films presented good transparency in visible light besides flexibility, mechanical resistance when touched, smaller thicknesses than the dermis and higher wettability than chitosan films, in both distilled water and phosphate-buffered saline (PBS). The interactions between the chitosan and EOs were confirmed by. The chitosan/EOs films presented morphologies with rough appearance and with EOs droplets in varying shapes and sizes, well distributed along the surface of the films, and the tensile properties were compatible to be applied as wound dressings. These results revealed that the CEO and MEO have a good potential to be incorporated into chitosan to make films for wound-healing applications.


2015 ◽  
Vol 64 (2) ◽  
pp. 137-142 ◽  
Author(s):  
LUKASZ KROKOWICZ ◽  
HANNA TOMCZAK ◽  
ADAM BOBKIEWICZ ◽  
JACEK MACKIEWICZ ◽  
RYSZARD MARCINIAK ◽  
...  

The incidence rate of the infected and complex wound is established at approximately 40,000/1 million of the world's adult population. The aim of this study was to assess the efficiency of three novel types of wound dressings comprising sodium chloride, metatitanic acid and silicon dioxide nanoparticles. The study design was to prove their antimicrobial properties against the microorganisms most commonly causing wound infections. The study evaluated the antimicrobial effect of tested dressings on referenced strains of bacteria (ATCC collection, Argenta, Poland) and strains of fungi species (our own collection of fungi cultured from patients). The dressings were tested with both bacterial and fungal strains on solid media (Mueller-Hinton, Sobouraud, bioMerieux, France) in the standard method. The results confirmed the inhibition of growth of bacteria and revealed zones of inhibition for Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. Significant zones of inhibition were established for Staphylococcus aureus and for fungi species of the Candida sp. These results would be crucial due to the fact of the low availability of antifungal therapeutics for both systemic and topical usage. Moreover, the current standard of antifungal treatment is associated with high costs and high toxicity in general. The preliminary results are very promising but further studies are necessary. Based on the obtained results, the tested dressings may contribute to the development of the surgical armamentarium of complex wound management in the near future.


2020 ◽  
Vol 66 (03) ◽  
pp. 7-8
Author(s):  
Metodija Trajchev ◽  
Jasmina Stojiljkovic ◽  
Dimitar Nakov ◽  
Marija Glavash Dodov ◽  
Milena Petrovska

2009 ◽  
Vol 61 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Brankica Tanovic ◽  
Ivana Potocnik ◽  
G. Delibasic ◽  
M. Ristic ◽  
M. Kostic ◽  
...  

Lavender, anise, chamomile, fennel, geranium, oregano, parsley, and sage essential oils were tested for their effectiveness against mushroom pathogens: Verticillium fungicola var. fungicola, Mycogone perniciosa, and Cladobotryum sp. Isolates were exposed to the volatile phase of the oils and then ventilated in order to determine if the effect of the oil was lethal to the pathogen. Oregano and geranium oils were the most toxic, having a fungicidal effect at 0.02-0.08 ?l/ml of air, depending on the pathogen. Oregano oil was characterized by high content of carvacrol and thymol, while citranelol and geraniol were the main components of geranium oil.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1642
Author(s):  
Adriana Skendi ◽  
Dimitrios Ν. Katsantonis ◽  
Paschalina Chatzopoulou ◽  
Maria Irakli ◽  
Maria Papageorgiou

The antifungal effect of aromatic plants (oregano, thyme, and Satureja) in dry form and as essential oils was evaluated in vitro (in potato dextrose agar (PDA)) and in bread against two phytopathogenic fungi found in food (Aspergillusniger and Penicillium). Gas and liquid chromatography were used to analyze essential oils attained by hydrodistillation of the aerial parts of the aromatic plants and of the dried plant aqueous solutions that were autoclaved for 20 min at 121 °C before analysis. Carvacrol, α-pinene, p-cymene, and γ-terpinene were the main components of the essential oils, whereas carvacrol, rosmarinic and caffeic acids were the main components of the water extracts. In vitro antifungal test results showed that the addition of plants in dry form had great antifungal potential against both fungal strains studied. Penicillium was more sensitive to the presence of aromatic plants than Aspergillus. Among the three plant species tested, thyme was the most potent antifungal against both fungi. For the bread product, all three aromatic plants studied showed inhibitory effects against both fungi. Results presented here suggest that oregano, thyme and Satureja incorporated in a bread recipe possess antimicrobial properties and are a potential source of antimicrobial ingredients for the food industry.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Iraj Rasooli ◽  
Horieh Saderi ◽  
Reza MohammadSalehi ◽  
Masoud Dadashi ◽  
Parviz Owlia

Author(s):  
Darshana B. Bhaisare ◽  
D. Thyagarajan ◽  
R. Richard Churchil ◽  
N. Punniamurthy

Two in-vitro experiments were conducted to evaluate the antibacterial, antifungal and antiviral properties of essential oil of herbal seeds. In-vitro antimicrobial properties of essential oils of phytobiotics was determined by disc diffusion method against Escherichia coli, Staphylococcus aureus, Pasteurella multocida and Salmonella typhi and two fungi namely Aspergillus fumigatus and Candida albicans. Thyme oil had statistically similar or significantly (P<0.05) higher inhibition zone against all the bacterial and fungal species compared to standard antibiotic, chloramphenicol or antifungal drug, nystatin. Fenugreek oil was not found to be active against microbes compared to control. Fennel and cumin oils had statistically similar or significantly (P<0.05) higher inhibition zone against all microbes except Staphylococcus aureus and Salmonella typhi compared to control. Antiviral activity of essential oils was determined by anti-NDV assay against New Castle disease virus (LaSota). The results indicated that essential oils of herbal seeds do not possess antiviral activity against NDV LaSota virus at 1mg/ml concentration.


Pathogens ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 15 ◽  
Author(s):  
Adrian Man ◽  
Luigi Santacroce ◽  
Romeo Iacob ◽  
Anca Mare ◽  
Lidia Man

Essential oils are concentrated natural extracts derived from plants, which were proved to be good sources of bioactive compounds with antioxidative and antimicrobial properties. This study followed the effect of some commonly used essential oils in micellar and aqueous extract on some of the most common pathogenic bacteria. Frankincense, myrtle, thyme, lemon, oregano and lavender essential oils were tested against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Both micellar and aqueous extracts were used for determination of their minimal inhibitory (MIC) and bactericidal concentrations (MBC). The most active oils were oregano, thyme, lemon and lavender, while the least active were frankincense and myrtle. Oregano oil presented up to 64 times lower MICs/MBCs than ethylic alcohol, if considered as standard, on all bacteria. Most susceptible bacteria were the Gram-positive cocci, including methicillin resistant S. aureus, while the most resistant was P. aeruginosa. With some exceptions, the best activity was achieved by micelles suspension of essential oils, with MICs and MBCs ranging from 0.1% to > 50% v/v. Only oregano and lavender aqueous extracts presented bactericidal activity and only on K. pneumoniae (MIC = 6.3%). Thyme, lemon and oregano oils present significantly lower overall average MICs for their micellar form than for their aqueous extracts. The present results may suggest some formulas of colloid or micelle suspensions of whole essential oils such as oregano, thyme or lemon oil, that may help in antimicrobial fight. Aqueous extracts of oregano or thyme oil with good antibacterial activity could also be used in selected cases.


2009 ◽  
Vol 610-613 ◽  
pp. 1331-1334 ◽  
Author(s):  
Jing Jing Zhang ◽  
Jun Liu ◽  
Hao Yu ◽  
Yu Zhang ◽  
Mei Fang Zhu ◽  
...  

Crosslinked UPM/PHBV/PVP fibers were successfully prepared using electrospinning process. The active pharmaceutical ingredient tetracycline hydrochloride (TH) was loaded onto the electrospun fibers through after-treatment method. Scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) and in vitro dissolution tests were carried out to characterize the medicated electrospun fibers. The SEM and FTIR results clearly showed the difference between the UPM / PHBV and UPM/ PHBV/ PVPelectrospun fibers. The pharmaceutical tests results indicated that the fibers had good drug-loaded capability and sustained-release properties. The as-prepared fibers might find possible applications as wound dressings or transdermal drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document