scholarly journals A Novel Algorithm for the Determination of Walker Damage in Loaded Disc Springs

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1661
Author(s):  
Max Benedikt Geilen ◽  
Marcus Klein ◽  
Matthias Oechsner

In this paper, a novel algorithm for the determination of Walker damage in loaded disc springs is presented. The algorithm takes a 3D-scan of a disc spring, measured residual stresses, material parameters, and spring loads as inputs. It outputs a distribution of Walker damage over the surface area of the input disc spring. As the algorithm allows a fully automated determination of the Walker damage, it can be used by disc spring manufacturers to reduce the working time spent on this task by specialized engineers significantly. Compared to spreadsheet applications using analytical formulas and finite element models using idealized geometry, this approach offers a superior description of the stress states in disc springs.

Author(s):  
Adam Koscso ◽  
Guido Dhondt ◽  
E. P. Petrov

A new method has been developed for sensitivity calculations of modal characteristics of bladed disks made of anisotropic materials. The method allows the determination of the sensitivity of the natural frequencies and mode shapes of mistuned bladed disks with respect to anisotropy angles that define the crystal orientation of the monocrystalline blades using full-scale finite element models. An enhanced method is proposed to provide high accuracy for the sensitivity analysis of mode shapes. An approach has also been developed for transforming the modal sensitivities to coordinate systems used in industry for description of the blade anisotropy orientations. The capabilities of the developed methods are demonstrated on examples of a single blade and a mistuned realistic bladed disk finite element models. The modal sensitivity of mistuned bladed disks to anisotropic material orientation is thoroughly studied.


2021 ◽  
Author(s):  
Zwelihle Ndlovu ◽  
Dawood Desai ◽  
Thanyani Pandelani ◽  
Harry Ngwangwa ◽  
Fulufhelo Nemavhola

This study assesses the modelling capabilities of four constitutive hyperplastic material models to fit the experimental data of the porcine sclera soft tissue. It further estimates the material parameters and discusses their applicability to a finite element model by examining the statistical dispersion measured through the standard deviation. Fifteen sclera tissues were harvested from porcine’ slaughtered at an abattoir and were subjected to equi-biaxial testing. The results show that all the four material models yielded very good correlations at correlations above 96 %. The polynomial (anisotropic) model gave the best correlation of 98 %. However, the estimated material parameters varied widely from one test to another such that there would be needed to normalise the test data to avoid long optimisation processes after applying the average material parameters to finite element models. However, for application of the estimated material parameters to finite element models, there would be needed to consider normalising the test data to reduce the search region for the optimisation algorithms. Although the polynomial (anisotropic) model yielded the best correlation, it was found that the Choi-Vito had the least variation in the estimated material parameters thereby making it an easier option for application of its material parameters to a finite element model and also requiring minimum effort in the optimisation procedure. For the porcine sclera tissue, it was found that the anisotropy more influenced by the fiber-related properties than the background material matrix related properties.


Author(s):  
Michael C. Gibson ◽  
Amer Hameed ◽  
John G. Hetherington

Swaging is one method of autofrettage, a means of pre-stressing high-pressure vessels to increase their fatigue lives and load bearing capacity. Swaging achieves the required deformation through physical interference between an oversized mandrel and the bore diameter of the tube, as it is pushed through the tube. A Finite Element model of the swaging process was developed, in ANSYS, and systematically refined, to investigate the mechanism of deformation and subsequent development of residual stresses. A parametric study was undertaken, of various properties such as mandrel slope angle, parallel section length and friction coefficient. It is observed that the axial stress plays a crucial role in the determination of the residual hoop stress and reverse yielding. The model, and results obtained from it, provides a means of understanding the swaging process and how it responds to different parameters. This understanding, coupled with future improvements to the model, potentially allows the swaging process to be refined, in terms of residual stresses development and mandrel driving force.


2020 ◽  
Vol 87 (11) ◽  
Author(s):  
Kurthan Kersch ◽  
Elmar Woschke

Abstract This work proposes a new method for the fatigue damage evaluation of vibrational loads, based on preceding investigations on the relationship between stresses and modal velocities. As a first step, the influence of the geometry on the particular relationship is studied. Therefore, an analytic expression for Euler Bernoulli beams with a non-constant cross section is derived. Afterward, a general method for obtaining geometric factors from finite element (FE) models is proposed. In order to ensure a fast fatigue damage evaluation, strongly simplified FE-models are used for the determination of both factors and measurement locations. The entire method is demonstrated on three mechanical structures and indicates a better compromise between effort and accuracy than existing methods. For all examples, the usage of velocities and geometric factors obtained from simplified FE models enables a sufficient fatigue damage calculation.


Author(s):  
John Draper

Modern fatigue analysis is providing analytical solutions to problems that could previously be addressed only by methods that were highly empirical and often inaccurate. We can now focus on five crucial steps to successful fatigue analysis. Working from elastic finite element models, the five steps are: 1) the calculation of elastic-plastic stresses and strains for complex loading and biaxial stress states; 2) modification of the endurance limit to allow for the interaction between small and larger cycles; 3) the calculation of the life to crack initiation; 4) critical plane searching to determine the orientation of a potential crack; 5) and an assessment of whether the crack will propagate to failure. The paper describes these steps and the underlying theories, and gives industrial examples of their application to real components.


Author(s):  
Igor Tsukrov ◽  
Michael Giovinazzo ◽  
Kateryna Vyshenska ◽  
Harun Bayraktar ◽  
Jon Goering ◽  
...  

Finite element models of 3D woven composites are developed to predict possible microcracking of the matrix during curing. A specific ply-to-ply weave architecture for carbon fiber reinforced epoxy is chosen as a benchmark case. Two approaches to defining the geometry of reinforcement are considered. One is based on the nominal description of composite, and the second involves fabric mechanics simulations. Finite element models utilizing these approaches are used to calculate the overall elastic properties of the composite, and predict residual stresses due to resin curing. It is shown that for the same volume fraction of reinforcement, the difference in the predicted overall in-plane stiffness is on the order of 10%. Numerical model utilizing the fabric mechanics simulations predicts lower level of residual stresses due to curing, as compared to nominal geometry models.


2005 ◽  
Vol 40 (2) ◽  
pp. 151-160 ◽  
Author(s):  
E P Silva ◽  
P M C L Pacheco ◽  
M. A Savi

The determination of residual stresses is an important task in the analysis of the quenching process. Nevertheless, because of the complexity of the phenomenon, many simplifications are usually adopted in the prediction of these stresses for engineering purposes. One of these simplifications is the effect of phase transformation. Many studies analyse residual stresses generated by the quenching process considering a thermoelastoplastic approach, neglecting phase transformation. The present study analyses the effect of austenite-martensite phase transformation during quenching in the determination of residual stresses, comparing two different models: complete (thermoelastoplastic model with austenite-martensite phase transformation) and without phase transformation (thermoelastoplastic model without phase transformation). The finite element method is employed for spatial discretization together with a constitutive model that represents the thermomechanical behaviour of the quenching process. Progressive induction hardening of steel cylinders with semicircular notches is of concern. Numerical simulations show situations where great discrepancies are introduced in the predicted residual stresses if phase transformation is neglected.


1988 ◽  
Vol 41 (2) ◽  
pp. 189 ◽  
Author(s):  
RA Winholtz ◽  
JB Cohen

The determination of residual stresses via X-ray diffraction is briefly reviewed, with particular emphasis on the triaxial stress state. A new method is proposed for determining the general stress tensor, which considerably reduces the variances of the stresses due to counting statistics and gradients. The procedure involves a generalised least-squares solution of strains measured at various tilts of the X-ray beam to the sample, and a new set of tilts is recommended to minimise these errors.


Sign in / Sign up

Export Citation Format

Share Document