scholarly journals Using In Situ Polymerization to Increase Puncture Resistance and Induce Reversible Formability in Silk Membranes

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2252 ◽  
Author(s):  
Nicholas S. Emonson ◽  
Daniel J. Eyckens ◽  
Benjamin J. Allardyce ◽  
Andreas Hendlmeier ◽  
Melissa K. Stanfield ◽  
...  

Silk fibroin is an excellent biopolymer for application in a variety of areas, such as textiles, medicine, composites and as a novel material for additive manufacturing. In this work, silk membranes were surface modified by in situ polymerization of aqueous acrylic acid, initiated by the reduction of various aryldiazonium salts with vitamin C. Treatment times of 20 min gave membranes which possessed increased tensile strength, tensile modulus, and showed significant increased resistance to needle puncture (+131%), relative to ‘untreated’ standards. Most interestingly, the treated silk membranes were able to be reversibly formed into various shapes via the hydration and plasticizing of the surface bound poly(acrylic acid), by simply steaming the modified membranes. These membranes and their unique properties have potential applications in advanced textiles, and as medical materials.

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 985 ◽  
Author(s):  
Yidong Liu ◽  
Lingfeng Jian ◽  
Tianhua Xiao ◽  
Rongtao Liu ◽  
Shun Yi ◽  
...  

CO2 has been regarded as one of the most promising blowing agents for polystyrene (PS) foam due to its non-flammability, low price, nontoxicity, and eco-friendliness. However, the low solubility and fast diffusivity of CO2 in PS hinder its potential applications. In this study, an attapulgite (ATP)/polypyrrole (PPy) nanocomposite was developed using the in situ polymerization method to generate the hierarchical cell texture for the PS foam based on the supercritical CO2 foaming. The results demonstrated that the nanocomposite could act as an efficient CO2 capturer enabling the random release of it during the foaming process. In contrast to the pure PS foam, the ATP/PPy nanocomposite reinforced PS foam is endowed with high cell density (up to 1.9 × 106) and similar thermal conductivity as the neat PS foam, as well as high compression modulus. Therefore, the in situ polymerized ATP/PPy nanocomposite makes supercritical CO2 foaming desired candidate to replace the widely used fluorocarbons and chlorofluorocarbons as PS blowing agents.


2013 ◽  
Vol 475-476 ◽  
pp. 1340-1343
Author(s):  
Hai Wang Wang ◽  
Xiu Juan Ding ◽  
Jie Sun ◽  
Jin Peng Luan

Nanometer materials are widely used in the modification of polymer materials such as polypropylene because of its unique performance. nanocomposite material,which expended the application field of polymer ,is a kind of new composite materials with high performance ratio and widely application prospect .This paper adopted the surface-initiated technology to coat and modify the surface of nanosilica,which solved the problem of the agglomeration and interface compatibility of the nanometer particles and improved its dispersion in the acrylic acid,then prepared SiO2/PAA nanocomposite .The composite was characterized by infrared spectrum and transmission electron microscopy (TEM) ,etc.The research results showed that the nanocomposite prepared by in-situ polymerization technology had higher toughness ,strength and more excellent comprehensive performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
S. C. Nagaraju ◽  
Aashis S. Roy ◽  
J. B. Prasanna Kumar ◽  
Koppalkar R. Anilkumar ◽  
G. Ramagopal

Polyaniline- (PANI) praseodymium Oxide (Pr2O3) composites have been synthesized by in situ polymerization method with different weight percentages. The synthesized composites have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The temperature dependent conductivity shows that the conductivity is due to the hopping of polarons and bipolarons. These composites show negative thermal coefficient (α) behavior as a function of temperature, which is characteristic behavior of semiconducting materials. Sensor studies have been carried out by two-probe method and found that the sensitivity increases with increase in % RH. It is noticed that stability increase is due to the presence of Pr2O3in polyaniline up to 30 wt%. A fast recovery and response time along with high sensitivity make these composites suitable for humidity sensors.


2017 ◽  
Vol 1 (2) ◽  
pp. 310-318 ◽  
Author(s):  
Jin Li ◽  
Zhilong Su ◽  
Xiaodong Ma ◽  
Hongjie Xu ◽  
Zixing Shi ◽  
...  

A novel type of supramolecular hydrogel was developed byin situpolymerization of acrylic acid (AA) and acrylamide (AM) monomers in the aqueous solution of chitosan (CS) based on the dynamic electrostatic interaction of ions.


2019 ◽  
Vol 20 (1) ◽  
pp. 88
Author(s):  
Marwah Noori Mohammed ◽  
Kamal Yusoh ◽  
Jun Haslinda Binti Haji Sharifuddin

Poly(N-vinylcaprolactam) (PNVCL) offers superior characteristics as a thermoresponsive polymer for various potential applications. An attractive procedure, namely in-situ polymerization, was used to prepare NVCL/clay nanocomposite in different clay ratios. Organo-modified clay as C20 and B30 were employed in a range between 1–5% based on weight. Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) were used to study thermal decomposition and to assess bond conversion during polymerization of the nanocomposite. This research was conducted to study PNVCL characteristics with the addition of clay as a nanocomposite. The stretch mode of the carboxylic group (C=O) and (C=C) was present in the band range about ~1635 cm–1 for the C20, but it was ranging between 1640 to 1664 cm–1 for the B30 of the nanocomposite. It was observed that the decomposition was different for each type of organoclay and the temperature peaked at 30 to 800 °C, to measure the degradation points at 5, 10, and 50%. Comparison results for FTIR and TGA showed that the best nanocomposite was found in the C20 (3%) case.


Sign in / Sign up

Export Citation Format

Share Document