scholarly journals Influences and Mechanisms of Nano-C-S-H Gel Addition on Fresh Properties of the Cement-Based Materials with Sucrose as Retarder

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2345 ◽  
Author(s):  
Deyu Kong ◽  
Guangpeng He ◽  
Haiwen Pan ◽  
Yuehui Weng ◽  
Ning Du ◽  
...  

Influences and mechanisms of chemically synthesized nano-C-S-H gel addition on fresh properties of the cement-based materials with sucrose as a retarder were investigated in this study. The results showed that the flow value of the fresh cement paste was gradually but slightly reduced with increasing nano-C-S-H gel addition due to its fibrous but well-dispersed characteristic in both water and cement paste. The semi-adiabatic calorimetry testing results verified that incorporation of nano-C-S-H gel could greatly mitigate the retarding effect of sucrose on cement hydration. The total organic carbon (TOC) indicated that the addition of the nano-C-S-H gel helps to reduce adsorption of the sucrose molecules into the protective layer, thus the semi-permeability of the protective layer was less reduced and that is why the addition of the nano-C-S-H gel can mitigate the retardation caused by the sucrose. Through XRD analysis, it was found that the CH crystals are more prone to grow along the (0001) plane with larger size in the paste with nano-C-S-H addition before the induction period starts, because the C-S-H nanoparticles can form 3D network to slow down the diffusion rate of the released ions and eliminate the convection in the paste, thus suppress the 3D nucleation and growth of the CH crystals. The XRD analysis also indicated a refinement of the ettringite crystals in the paste with sucrose addition, but introduction of nano-C-S-H gel did not show further refinement, which was also verified by the SEM observation.

2021 ◽  
Vol 10 (1) ◽  
pp. 768-778
Author(s):  
Shaoqiang Meng ◽  
Xiaowei Ouyang ◽  
Jiyang Fu ◽  
Yanfei Niu ◽  
Yuwei Ma

Abstract Graphene (G) and graphene oxide (GO) have been shown to significantly improve the mechanical properties of cement-based materials. In this study, the effect of the G/GO on cement hydration was investigated. First, the zeta potential of G/GO in simulated solutions was tested, and the interaction between G/GO’s surface and Ca2+ was explored. Subsequently, scanning electron microscopy was used to observe the morphology of C–S–H nucleation and growth on the cement surface in the cement paste containing G/GO. Furthermore, XRD and TGA analyses were carried out on the hydration products of the sample. At last, isothermal calorimetry was applied to investigate the influence of G/GO on the early hydration of cement. The results showed that the addition of G/GO significantly accelerates C–S–H nucleation and growth on the cement surface. It is indicated that the high mobility ions derived by G/GO in the cement paste dominate the reason for the accelerated hydration of cement. The presence of G, especially GO, facilitates the mobility of ions, especially Ca2+, thus enhances the interaction between the cement surface and the ions. This strong interaction promotes the C–S–H nucleation and growth, and therefore, the hydration of the cement.


2016 ◽  
Vol 23 (6) ◽  
pp. 605-615 ◽  
Author(s):  
Xueyu Pang ◽  
Christian Meyer

AbstractA particle-based C3S hydration model with only three rate constants developed in Part I of this study is further developed and applied to Portland cement paste hydration. Experimental data are obtained with chemical shrinkage tests of cement pastes prepared with different water to cement (w/c) ratios (0.3–0.5), and cured at different temperatures (24°C–63°C) and pressures (0.69–51.7 MPa). The proposed model produces exceptionally good fits to test data. The fitted results indicate that the entire process of cement hydration can be modeled by connecting a nucleation and growth mechanism with a diffusion mechanism. Furthermore, the results reveal that the deceleration period of cement hydration may be due to the gradual transition of the rate-controlling mechanisms of different particles. The fitted rate constants generally follow basic chemical kinetics laws in terms of their dependencies on curing temperature and pressure, and appear to be largely independent of w/c ratio.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1002
Author(s):  
Grigory Yakovlev ◽  
Rostislav Drochytka ◽  
Gintautas Skripkiunas ◽  
Larisa Urkhanova ◽  
Irina Polyanskikh ◽  
...  

The present research is focused on the investigation of the influence of ultrafine additives on the structure formation of hardened cement paste and the establishment of the mechanisms of the morphological transformations, which determine the properties of hydrated products. In the course of the research, the modification of ordinary Portland cement was performed by the suspension of multi-walled carbon nanotubes (MWCNTs), carbon black (CB) paste, and silica fume (SF). Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis, X-ray diffraction (XRD) analysis, thermal analysis, and Fourier-transform infrared (FTIR) spectroscopy were used to study cement hydration products. The morphology of hardened cement paste depends on the chemical reactivity of additives, their geometry, and their genesis. The action mechanism of the inert carbon-based additives and pozzolanic silica fume were considered. The cement hydration products formed in the process of modification by both types of ultrafine additives are described. In the case of the modification of cement paste by inert MWCNTs and CB paste, the formation of cement hydration products on their surface without strong adhesion was observed, whereas in the case of the addition of SF separately and together with MWCNTs, the strong adhesion of additives and cement hydration products was noted.


2020 ◽  
Vol 9 (1) ◽  
pp. 303-322 ◽  
Author(s):  
Zhifang Zhao ◽  
Tianqi Qi ◽  
Wei Zhou ◽  
David Hui ◽  
Cong Xiao ◽  
...  

AbstractThe behavior of cement-based materials is manipulated by chemical and physical processes at the nanolevel. Therefore, the application of nanomaterials in civil engineering to develop nano-modified cement-based materials is a promising research. In recent decades, a large number of researchers have tried to improve the properties of cement-based materials by employing various nanomaterials and to characterize the mechanism of nano-strengthening. In this study, the state of the art progress of nano-modified cement-based materials is systematically reviewed and summarized. First, this study reviews the basic properties and dispersion methods of nanomaterials commonly used in cement-based materials, including carbon nanotubes, carbon nanofibers, graphene, graphene oxide, nano-silica, nano-calcium carbonate, nano-calcium silicate hydrate, etc. Then the research progress on nano-engineered cementitious composites is reviewed from the view of accelerating cement hydration, reinforcing mechanical properties, and improving durability. In addition, the market and applications of nanomaterials for cement-based materials are briefly discussed, and the cost is creatively summarized through market survey. Finally, this study also summarizes the existing problems in current research and provides future perspectives accordingly.


2021 ◽  
Vol 287 ◽  
pp. 123035
Author(s):  
Valery Lesovik ◽  
Natalia Chernysheva ◽  
Roman Fediuk ◽  
Mugahed Amran ◽  
G. Murali ◽  
...  

2019 ◽  
Vol 116 ◽  
pp. 191-201 ◽  
Author(s):  
Mateusz Wyrzykowski ◽  
Karen Scrivener ◽  
Pietro Lura

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Li Wang ◽  
Hongliang Zhang ◽  
Yang Gao

Low temperature negatively affects the engineering performance of cementitious materials and hinders the construction productivity. Previous studies have already demonstrated that TiO2 nanoparticles can accelerate cement hydration and enhance the strength development of cementitious materials at room temperature. However, the performance of cementitious materials containing TiO2 nanoparticles at low temperatures is still unknown. In this study, specimens were prepared through the replacement of cement with 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, and 5 wt.% TiO2 nanoparticles and cured under temperatures of 0°C, 5°C, 10°C, and 20°C for specific ages. Physical and mechanical properties of the specimens were evaluated through the setting time test, compressive strength test, flexural strength test, hydration degree test, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD) analysis, thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM) in order to examine the performance of cementitious materials with and without TiO2 nanoparticles at various curing temperatures. It was found that low temperature delayed the process of cement hydration while TiO2 nanoparticles had a positive effect on accelerating the cement hydration and reducing the setting time in terms of the results of the setting time test, hydration degree test, and strength test, and the specimen with the addition of 2 wt.% TiO2 nanoparticles showed the superior performance. Refined pore structure in the MIP tests, more mass loss of CH in TGA, intense peak appearance associated with the hydration products in XRD analysis, and denser microstructure in SEM demonstrated that the specimen with 2 wt.% TiO2 nanoparticles exhibited preferable physical and mechanical properties compared with that without TiO2 nanoparticles under various curing temperatures.


Sign in / Sign up

Export Citation Format

Share Document