scholarly journals The Influence of the Addition of Plant-Based Natural Fibers (Jute) on Biocemented Sand Using MICP Method

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4198 ◽  
Author(s):  
Md Al Imran ◽  
Sivakumar Gowthaman ◽  
Kazunori Nakashima ◽  
Satoru Kawasaki

The microbial-induced carbonate precipitation (MICP) method has gained intense attention in recent years as a safe and sustainable alternative for soil improvement and for use in construction materials. In this study, the effects of the addition of plant-based natural jute fibers to MICP-treated sand and the corresponding microstructures were measured to investigate their subsequent impacts on the MICP-treated biocemented sand. The fibers used were at 0%, 0.5%, 1.5%, 3%, 5%, 10%, and 20% by weight of the sand, while the fiber lengths were 5, 15, and 25 mm. The microbial interactions with the fibers, the CaCO3 precipitation trend, and the biocemented specimen (microstructure) were also evaluated based on the unconfined compressive strength (UCS) values, scanning electron microscopy (SEM), and fluorescence microscopy. The results of this study showed that the added jute fibers improved the engineering properties (ductility, toughness, and brittleness behavior) of the biocemented sand using MICP method. Furthermore, the fiber content more significantly affected the engineering properties of the MICP-treated sand than the fiber length. In this study, the optimal fiber content was 3%, whereas the optimal fiber length was s 15 mm. The SEM results indicated that the fiber facilitated the MICP process by bridging the pores in the calcareous sand, reduced the brittleness of the treated samples, and increased the mechanical properties of the biocemented sand. The results of this study could significantly contribute to further improvement of fiber-reinforced biocemented sand in geotechnical engineering field applications.

2019 ◽  
Vol 15 (5) ◽  
pp. 947-957 ◽  
Author(s):  
Giridharan R. ◽  
Raatan V.S. ◽  
Jenarthanan M.P.

Purpose The purpose of this paper is to study the effects of fiber length and content on properties of E-glass and bamboo fiber reinforced epoxy resin matrices. Experiments are carried out as per ASTM standards to find the mechanical properties. Further, fractured surface of the specimen is subjected to morphological study. Design/methodology/approach Composite samples were prepared according to ASTM standards and were subjected to tensile and flexural loads. The fractured surfaces of the specimens were examined directly under scanning electron microscope. Findings From the experiment, it was found that the main factors that influence the properties of composite are fiber length and content. The optimum fiber length and weight ratio are 15 mm and 16 percent, respectively, for bamboo fiber/epoxy composite. Hence, the prediction of optimum fiber length and content becomes important, so that composite can be prepared with best mechanical properties. The investigation revealed the suitability of bamboo fiber as an effective reinforcement in epoxy matrix. Practical implications As bamboo fibers are biodegradable, recyclable, light weight and so on, their applications are numerous. They are widely used in automotive components, aerospace parts, sporting goods and building industry. With this scenario, the obtained result of bamboo fiber reinforced composites is not ignorable and could be of potential use, since it leads to harnessing of available natural fibers and their composites rather than synthetic fibers. Originality/value This work enlists the effect of fiber length and fiber content on tensile and flexural properties of bamboo fiber/epoxy composite, which has not been attempted so far.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1556 ◽  
Author(s):  
Fucheng Guo ◽  
Rui Li ◽  
Shuhua Lu ◽  
Yanqiu Bi ◽  
Haiqi He

Fiber-reinforced asphalt mixture has been widely used in pavement engineering to not only prevent asphalt binder leakage but also improve engineering properties of asphalt mixture. However, the research on three key parameters, namely fiber type, fiber length, and fiber content, which significantly affect the performance of fiber-reinforced asphalt mixture, have seldom been conducted systematically. To determine these three key parameters in the support of the application of fibers in mixture scientifically, three commonly used fibers were selected, basalt fiber, polyester fiber, and lignin fiber, and the testing on fibers, fiber-reinforced asphalt binders, and fiber-reinforced asphalt mixtures was conducted afterwards. The results showed: the favorable fiber type was basalt fiber; the favorable basalt fiber length was 6mm; the engineering properties including high temperature stability, low temperature crack resistance, and water susceptibility were clearly improved by the added basalt fiber, and the optimum basalt fiber content was 0.4 wt.%. The obtained results may be valuable from a practical point of view to engineers and practitioners.


2019 ◽  
Vol 9 (20) ◽  
pp. 4462 ◽  
Author(s):  
Md Imran ◽  
Shuya Kimura ◽  
Kazunori Nakashima ◽  
Niki Evelpidou ◽  
Satoru Kawasaki

In recent years, traditional material for coastal erosion protection has become very expensive and not sustainable and eco-friendly for the long term. As an alternative countermeasure, this study focused on a sustainable biological ground improvement technique that can be utilized as an option for improving the mechanical and geotechnical engineering properties of soil by the microbially induced carbonate precipitation (MICP) technique considering native ureolytic bacteria. To protect coastal erosion, an innovative and sustainable strategy was proposed in this study by means of combing geotube and the MICP method. For a successful sand solidification, the urease activity, environmental factors, urease distribution, and calcite precipitation trend, among others, have been investigated using the isolated native strains. Our results revealed that urease activity of the identified strains denoted as G1 (Micrococcus sp.), G2 (Pseudoalteromonas sp.), and G3 (Virgibacillus sp.) relied on environment-specific parameters and, additionally, urease was not discharged in the culture solution but would discharge in and/or on the bacterial cell, and the fluid of the cells showed urease activity. Moreover, we successfully obtained solidified sand bearing UCS (Unconfined Compressive Strength) up to 1.8 MPa. We also proposed a novel sustainable approach for field implementation in a combination of geotube and MICP for coastal erosion protection that is cheaper, energy-saving, eco-friendly, and sustainable for Mediterranean countries, as well as for bio-mediated soil improvement.


2020 ◽  
Vol 6 (12) ◽  
pp. 2363-2374
Author(s):  
Erdawaty Erdawaty ◽  
Tri Harianto ◽  
A. B. Muhiddin ◽  
Ardy Arsyad

In civil engineering, alternative materials showed rapid progress. Asphalt derived from Buton Island in Indonesia, also known as Asbuton, was located in the limestone bedrock. A large deposit of Asbuton could guarantee the supply of alternative construction materials. In that regard, Asbuton performance as an alternative material to several subjects needs to be analyzed. Therefore, this study was conducted to analyze Asbuton’s behavior as a filler in a floating column model as a soft soil improvement concept. Asbuton added to sand and gravel mixture as filler and waterglass as a binder. CBR samples were tested to acquire the optimum composition with varied curing days namely 0, 3, and 7 days, following ASTM D-1883, followed by a compressive column model test which was based on ASTM D-2166. Finally, the column applied to the soft soil layer to be tested in a loading test, and the results are then compared for each composition. The results showed that the granular material's composition including Asbuton, the waterglass content, and the curing period significantly affect the engineering properties of the artificial column. The results revealed that the granular column with Asbuton with the addition of waterglass could increase soil’s load capacity and reduce the settlement of soft soils. Doi: 10.28991/cej-2020-03091623 Full Text: PDF


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1075 ◽  
Author(s):  
Waqas Ahmad ◽  
Syed Hassan Farooq ◽  
Muhammad Usman ◽  
Mehran Khan ◽  
Ayaz Ahmad ◽  
...  

Recently, the addition of natural fibers to high strength concrete (HSC) has been of great interest in the field of construction materials. Compared to artificial fibers, natural fibers are cheap and locally available. Among all natural fibers, coconut fibers have the greatest known toughness. In this work, the mechanical properties of coconut fiber reinforced high strength concrete (CFR-HSC) are explored. Silica fume (10% by mass) and super plasticizer (1% by mass) are also added to the CFR-HSC. The influence of 25 mm-, 50 mm-, and 75 mm-long coconut fibers and 0.5%, 1%, 1.5%, and 2% contents by mass is investigated. The microstructure of CFR-HSC is studied using scanning electron microscopy (SEM). The experimental results revealed that CFR-HSC has improved compressive, splitting-tensile, and flexural strengths, and energy absorption and toughness indices compared to HSC. The overall best results are obtained for the CFR-HSC having 50 mm long coconut fibers with 1.5% content by cement mass.


Author(s):  
Muhamad Fitri ◽  
Shahruddin Mahzan

The need of coconuts in Indonesia is relatively high. The use of large quantities of coconuts produces large amounts of organic waste from coco fiber, which tends to become waste if it is not used to be beneficial for humans.One of the potential uses of coconut fiber is as a reinforcement of natural fibers in polymer matrix composite materials. Recently, the applications of composite materials have been expanded widely including structural angine component which whitstand certain load like impact load. But most of them used synthetic fiber. Although the use of natural fibers as reinforcement in composite materials has been widely studied, their use is still limited because natural fibers have their own advantages and disadvantages. The purpose of this study was to measure the impact strength of specimens of coconut fiber reinforced polymer matrix composite material, and to determine the effect of the length and concentration of coconut fiber on its impact strength. A significant and valid regression model was also generated in this research, that states the relationship between fiber length and fiber content of resin matrix composite material to its impact strength. The result shows that the impact strength of the samples were influenced by fiber content and fiber length. The regression models for the impact strength of  resin composite reinforced with coconut fiber is Y = 4.44 +0.180 X1 – 0.52 X2  Where: Y = Impact Strength (kJ/m2), and X1= Fiber length (mm), and X2= Fiber content (%).


2013 ◽  
Vol 594-595 ◽  
pp. 471-476 ◽  
Author(s):  
Heru Purnomo ◽  
Dedi Priadi ◽  
Gilles Ausias ◽  
Thibaut Lecompte ◽  
H. Riana Lumingkewas ◽  
...  

Low rise buildings and rural houses in Indonesia are often constructed with non-standard bricks. In some provinces, like West Java, fired clay and unfired soil lime bricks co-exist as non standard bricks. These bricks are traditionally produced in home run plants with little adherance to appropriate mix designs. These unfired soil lime bricks enter the market within 2 weeks of production, which inflicts potential loss to the buyers due to their low performance quality. The paper discusses strength improvements of these early age unfired bricks by adding natural fibers. Untreated coconut fibers with three different lengths (1 cm, 2.5 cm and 4 cm) were prepared for bricks reinforcements. The effects of 2%, 4% and 6% fiber addition to the strength of bricks were investigated. The bricks reinforced with 4% fiber content resulted in better strengths compared to those reinforced with other percentage of fibers. The effect of fiber length uniformity to the bricks strength was also evaluated. A 4% non-uniform fiber addition, which constitutes 1/3 part each of 1 cm, 2.5 cm and 4 cm average fiber length, was investigated. The results show that unfired bricks added with uniform fiber resulted in better performances compared to those added with non-uniform fibers. Higher compressive and bending strengths, compared to those strengths of unfired plain soil lime bricks and traditional soil lime bricks, could be achieved through fiber addition.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 155
Author(s):  
Régis Pamponet da Fonseca ◽  
Janaíde Cavalcante Rocha ◽  
Malik Cheriaf

The addition of natural fibers used as reinforcement has great appeal in the construction materials industry since natural fibers are cheaper, biodegradable, and easily available. In this work, we analyzed the feasibility of using the fibers of piassava, tucum palm, razor grass, and jute from the Amazon rainforest as reinforcement in mortars, exploiting the mechanical properties of compressive and flexural strength of samples with 1.5%, 3.0%, and 4.5% mass addition of the composite binder (50% Portland cement + 40% metakaolin + 10% fly ash). The mortars were reinforced with untreated (natural) and treated (hot water treatment, hornification, 8% NaOH solution, and hybridization) fibers, submitted to two types of curing (submerged in water, and inflated with CO2 in a pressurized autoclave) for 28 days. Mortars without fibers were used as a reference. For the durability study, the samples were submitted to 20 drying/wetting cycles. The fibers improved the flexural strength of the mortars and prevented the abrupt rupture of the samples, in contrast to the fragile behavior of the reference samples. The autoclave cure increased the compressive strength of the piassava and tucum palm samples with 4.5% of fibers.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 268
Author(s):  
Jitong Zhao ◽  
Huawei Tong ◽  
Yi Shan ◽  
Jie Yuan ◽  
Qiuwang Peng ◽  
...  

Microbial-induced calcite precipitation (MICP) has been a promising method to improve geotechnical engineering properties through the precipitation of calcium carbonate (CaCO3) on the contact and surface of soil particles in recent years. In the present experiment, water absorption and unconfined compressive strength (UCS) tests were carried out to investigate the effects of three different fiber types (glass fiber, polyester fiber, and hemp fiber) on the physical and mechanical properties of MICP-treated calcareous sand. The fibers used were at 0%, 0.10%, 0.15%, 0.20%, 0.25%, 0.30%, 0.35%, and 0.40% relative to the weight of the sand. The results showed that the failure strain and ductility of the samples could be improved by adding fibers. Compared to biocemented sand (BS), the water absorption of these three fiber-reinforced biocemented sands were, respectively, decreased by 11.60%, 21.18%, and 7.29%. UCS was, respectively, increased by 24.20%, 60.76%, and 6.40%. Polyester fiber produced the best effect, followed by glass fiber and hemp fiber. The optimum contents of glass fiber and polyester fiber were 0.20% and 0.25%, respectively. The optimum content of hemp fiber was within the range of 0.20–0.25%. Light-emitting diode (LED) microscope and scanning electron microscope (SEM) images lead to the conclusion that only a little calcite precipitation had occurred around the hemp fiber, leading to a poor bonding effect compared to the glass and polyester fibers. It was therefore suggested that polyester fiber should be used to improve the properties of biocemented sand.


Sign in / Sign up

Export Citation Format

Share Document