scholarly journals Porous Carbon-Based Supercapacitors Directly Derived from Metal–Organic Frameworks

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4215 ◽  
Author(s):  
Hyun-Chul Kim ◽  
Seong Huh

Numerously different porous carbons have been prepared and used in a wide range of practical applications. Porous carbons are also ideal electrode materials for efficient energy storage devices due to their large surface areas, capacious pore spaces, and superior chemical stability compared to other porous materials. Not only the electrical double-layer capacitance (EDLC)-based charge storage but also the pseudocapacitance driven by various dopants in the carbon matrix plays a significant role in enhancing the electrochemical supercapacitive performance of porous carbons. Since the electrochemical capacitive activities are primarily based on EDLC and further enhanced by pseudocapacitance, high-surface carbons are desirable for these applications. The porosity of carbons plays a crucial role in enhancing the performance as well. We have recently witnessed that metal–organic frameworks (MOFs) could be very effective self-sacrificing templates, or precursors, for new high-surface carbons for supercapacitors, or ultracapacitors. Many MOFs can be self-sacrificing precursors for carbonaceous porous materials in a simple yet effective direct carbonization to produce porous carbons. The constituent metal ions can be either completely removed during the carbonization or transformed into valuable redox-active centers for additional faradaic reactions to enhance the electrochemical performance of carbon electrodes. Some heteroatoms of the bridging ligands and solvate molecules can be easily incorporated into carbon matrices to generate heteroatom-doped carbons with pseudocapacitive behavior and good surface wettability. We categorized these MOF-derived porous carbons into three main types: (i) pure and heteroatom-doped carbons, (ii) metallic nanoparticle-containing carbons, and (iii) carbon-based composites with other carbon-based materials or redox-active metal species. Based on these cases summarized in this review, new MOF-derived porous carbons with much enhanced capacitive performance and stability will be envisioned.

2021 ◽  
Vol 7 (8) ◽  
pp. 109
Author(s):  
Noemi Monni ◽  
Mariangela Oggianu ◽  
Suchithra Ashoka Sahadevan ◽  
Maria Laura Mercuri

Multifunctional molecular materials have attracted material scientists for several years as they are promising materials for the future generation of electronic devices. Careful selection of their molecular building blocks allows for the combination and/or even interplay of different physical properties in the same crystal lattice. Incorporation of redox activity in these networks is one of the most appealing and recent synthetic strategies used to enhance magnetic and/or conducting and/or optical properties. Quinone derivatives are excellent redox-active linkers, widely used for various applications such as electrode materials, flow batteries, pseudo-capacitors, etc. Quinones undergo a reversible two-electron redox reaction to form hydroquinone dianions via intermediate semiquinone radical formation. Moreover, the possibility to functionalize the six-membered ring of the quinone by various substituents/functional groups make them excellent molecular building blocks for the construction of multifunctional tunable metal-organic frameworks (MOFs). An overview of the recent advances on benzoquinone-based MOFs, with a particular focus on key examples where magnetic and/or conducting properties are tuned/switched, even simultaneously, by playing with redox activity, is herein envisioned.


Author(s):  
Matheus Ireno da Silva ◽  
Ítalo R. Machadoa ◽  
Henrique E. Toma ◽  
Koiti Araki ◽  
Lúcio Angnes ◽  
...  

Metal–organic frameworks (MOFs) are being extensively reported as ideal templates or precursors for energy storage and conversion materials thanks to their unique architectures with high surface area, high ordered porosity,...


2020 ◽  
Vol 43 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Hafiz Muhammad Awais ◽  
Muhammad Jamal ◽  
Muhammad Javaid

AbstractMetal-organic frameworks (MOFs) are porous materials formed by strong bonds between metal ions and organic ligands to represent very high surface area, large pore volume, excellent chemical stability and unique morphology. Work on synthesis, structures and characteristics of many MOFs shows the importance of these frameworks with versatile applications, such as energy storage devices of excellent electrode materials, gas storage, heterogeneous catalysis, environmental hazard, assessment of chemicals and sensing of different gases. A topological property or index is a numerical invariant that predicts the physicochemical properties of the chemical compounds of the underlying molecular graph or framework. Wiener (1947) created the practice of the topological indices (TI’s) in organic molecules with the reference of boiling point of paraffin. In this paper, we study the two different metal-organic frameworks with respect to the number of increasing layers with metal and organic ligands as well. We also compute the generalized Zagreb index and generalized Zagreb connection index of these frameworks. Moreover, the various indices and connection indices are obtained by using the aforesaid generalized versions. At the end, a comparison is also included between the indices and connection indices with the help of numerical values and their 3D plots.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2091
Author(s):  
Ngo Minh Phuoc ◽  
Euiyeon Jung ◽  
Nguyen Anh Thu Tran ◽  
Young-Woo Lee ◽  
Chung-Yul Yoo ◽  
...  

Capacitive deionization (CDI) based on ion electrosorption has recently emerged as a promising desalination technology due to its low energy consumption and environmental friendliness compared to conventional purification technologies. Carbon-based materials, including activated carbon (AC), carbon aerogel, carbon cloth, and carbon fiber, have been mostly used in CDI electrodes due their high surface area, electrochemical stability, and abundance. However, the low electrical conductivity and non-regular pore shape and size distribution of carbon-based electrodes limits the maximization of the salt removal performance of a CDI desalination system using such electrodes. Metal-organic frameworks (MOFs) are novel porous materials with periodic three-dimensional structures consisting of metal center and organic ligands. MOFs have received substantial attention due to their high surface area, adjustable pore size, periodical unsaturated pores of metal center, and high thermal and chemical stabilities. In this study, we have synthesized ZIF-67 using CNTs as a substrate to fully utilize the unique advantages of both MOF and nanocarbon materials. Such synthesis of ZIF-67 carbon nanostructures was confirmed by TEM, SEM, and XRD. The results showed that the 3D-connected ZIF-67 nanostructures bridging by CNTs were successfully prepared. We applied this nanostructured ZIF-67@CNT to CDI electrodes for desalination. We found that the salt removal performance was significantly enhanced by 88% for 30% ZIF-67@CNTs-included electrodes as compared with pristine AC electrodes. This increase in salt removal behavior was analyzed by electrochemical analysis such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements, and the results indicate reduced electrical impedance and enhanced electrode capacitance in the presence of ZIF-67@CNTs.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 513 ◽  
Author(s):  
Sofia C. Vardali ◽  
Natalia Manousi ◽  
Mariusz Barczak ◽  
Dimitrios A. Giannakoudakis

The determination of organic and inorganic pollutants in fish samples is a complex and demanding process, due to their high protein and fat content. Various novel sorbents including graphene, graphene oxide, molecular imprinted polymers, carbon nanotubes and metal-organic frameworks (MOFs) have been reported for the extraction and preconcentration of a wide range of contaminants from fish tissue. MOFs are crystalline porous materials that are composed of metal ions or clusters coordinated with organic linkers. Those materials exhibit extraordinary properties including high surface area, tunable pore size as well as good thermal and chemical stability. Therefore, metal-organic frameworks have been recently used in many fields of analytical chemistry including sample pretreatment, fabrication of stationary phases and chiral separations. Various MOFs, and especially their composites or hybrids, have been successfully utilized for the sample preparation of fish samples for the determination of organic (i.e., antibiotics, antimicrobial compounds, polycyclic aromatic hydrocarbons, etc.) and inorganic pollutants (i.e., mercury, palladium, cadmium, lead, etc.) as such or after functionalization with organic compounds.


2021 ◽  
Vol 33 (2) ◽  
pp. 245-252
Author(s):  
ABHINANDAN RANA

Metal-organic frameworks (MOFs) are inorganic-organic hybrid porous materials that are composed of positively charged metal ions and organic linkers. The metal ions form nodes that connect the arms of the linkers together to form one-, two-, or three-dimensional structures. Due to this void structure, MOFs have an unusually large internal surface area. They have received enormous interest in recent years particularly as newly developed porous materials. They possess a wide range of potential applications like gas storage, catalysis, sensors, drug delivery, adsorption, etc. In present review article, synthetic methods and applications of MOFs have been discussed.


2021 ◽  
Author(s):  
Bahareh ameri ◽  
Akbar Mohammadi Zardkhoshoui ◽  
Saied Saeed Hosseiny Davarani

Metal-organic frameworks (MOFs) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein,...


Sign in / Sign up

Export Citation Format

Share Document