scholarly journals Biochars from Post-Production Biomass and Waste from Wood Management: Analysis of Carbonization Products

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4971
Author(s):  
Wojciech Kosakowski ◽  
Malgorzata Anita Bryszewska ◽  
Piotr Dziugan

Waste biomass can be used as an alternative source of energy. However, such use requires prior treatment of the material. This paper describes the physicochemical characteristics of biochar obtained by the thermochemical decomposition of six types of agricultural waste biomass: residues from the production of flavored spirits (a pulp of lime, grapefruit and lemon), beetroot pulp, apple pomace, brewer’s spent grain, bark and municipal solid waste (bark, sawdust, off-cuts and wood chips). The biomass conversion process was studied under conditions of limited oxygen access in a reactor. The temperature was raised from 450 to 850 °C over 30 min, followed by a residence time of 60 min. The solid products were characterized in terms of their elemental compositions, mass, energy yield and ash content. The gaseous products from pyrolysis of the biomass were also analyzed and their compositions were characterized by GCMS (Gas Chromatography–Mass Spectrometry). The carbonization process increased the carbon content by, on average, 1.7 times, from an average percentage of 46.09% ± 3.65% for biomass to an average percentage of 74.72% ± 5.36% for biochars. After carbonization, the biochars were found to have a net calorific value of between 27 and 32 MJ/kg, which is comparable or even higher than good-quality coal (eco pea coal 24–26 MJ/kg). The net calorific values show that the volatile products can also be considered as a valuable source of energy.

2016 ◽  
Vol 20 (3) ◽  
pp. 115-124
Author(s):  
Marta Marczak ◽  
Mateusz Karczewski ◽  
Dorota Makowska ◽  
Piotr Burmistrz

AbstractCombustion and co-combustion of biomass from different sources is one of the most popular technologies applied in Poland. It allows management of numerous industrial, communal and agricultural waste. Organic waste constitutes one of the richest sources of cheap biomass solid fuels since they are very popular. The paper includes an assessment of practical use of biomass waste: hazelnut shell and pistachio nut shell. The impact of pyrolysis temperature (300, 450 and 550°C) of the investigated biomass on the quality of the obtained biochar was determined and the optimal temperature of this process was defined. The quality of the investigated biomass was analysed on account of its use for energy purposes. Numerous advantageous properties of the obtained materials were found out, for instance: low content of ash and a noticeable increase of the calorific value with an increase of the pyrolysis temperature.


2018 ◽  
Vol 15 (1) ◽  
pp. 63
Author(s):  
Yulisa Fitrianingsih

ABSTRACTFarmer groups in Punggur Kecil Village do not have rice milling machine, which causing high cost production. In addition, agricultural activities resulted unprocessed agricultural waste and causing acidic soils. On the other hand, agricultural waste has great potential for biomass as an alternative source of energy and soil conditioner. An alternative solution is provided to help farmers for processing agricultural waste, namely SUMBER, and for rice milling rice milling or rice huller. The objectives of this program are: a) To create independent farmer groups in the production processes of agricultural products. b) To processing agricultural waste into biomass c) To trigger community to actively involved in finding solution regarding agricultural waste problem which could reduce pollution from agricultural waste. d) applying biomass from agricultural waste as a soil conditioner that can increase the pH of agricultural soils. Keywords: Agricultural waste, biomass, horticulture, rice


2020 ◽  
Vol 161 ◽  
pp. 01081
Author(s):  
Alexey Demin ◽  
Roza Dyganova ◽  
Nail Fakhreev

Here, we present the results of numerical studies of biomass gasification using poultry litter, sewage sludge and wood waste (pine shavings) as examples of starting materials. The aim of the study was to find ways to increase the degree of biomass conversion to combustible gaseous products (CO, H2, CnHm) and to achieve high calorific value of the generated synthesis gas. Modeling biomass gasification was performed for a multicomponent reacting system in a state of thermodynamic and chemical equilibrium. The mathematical model and the calculation program created by the authors were used. The presence of a condensed phase in the form of fine particles of solid carbon and ash in biomass gasification products was taken into account. The optimal levels of gasification temperatures and conditions that help minimizing the concentration of solid carbon particles in gasification products were determined. For optimal biomass gasification, we recommend using the thermal energy obtained from burning part of the generated syngas.


2019 ◽  
Vol 5 (12) ◽  
pp. 37-46
Author(s):  
K. Chalov ◽  
Yu. Lugovoy ◽  
Yu. Kosivtsov ◽  
E. Sulman

This paper presents a study of the process of thermal degradation of crosslinked polyethylene. The kinetics of polymer decomposition was studied by thermogravimetry. Crosslinked polyethylene showed high heat resistance to temperatures of 400 °C. The temperature range of 430–500 °C was determined for the loss of the bulk of the sample. According to thermogravimetric data, the decomposition process proceeds in a single stage and includes a large number of fracture, cyclization, dehydrogenation, and other reactions. The process of pyrolysis of a crosslinked polymer in a stationary-bed metal reactor was investigated. The influence of the process temperature on the yield of solid, liquid, and gaseous pyrolysis products was investigated. The optimum process temperature was 500 °C. At this temperature, the yield of liquid and gaseous products was 85.0 and 12.5% (mass.), Respectively. Samples of crosslinked polyester decomposed almost completely. The amount of carbon–containing residue was 3.5% by weight of the feedstock. With increasing temperature, the yield of liquid products decreased slightly and the yield of gaseous products increased, but their total yield did not increase. For gaseous products, a qualitative and quantitative composition was determined. The main components of the pyrolysis gas were hydrocarbons C1–C4. The calorific value of pyrolysis gas obtained at a temperature of 500 °C was 17 MJ/m3. Thus, the pyrolysis process can be used to process crosslinked polyethylene wastes to produce liquid hydrocarbons and combustible gases.


Fuel ◽  
2021 ◽  
Vol 296 ◽  
pp. 120611
Author(s):  
Agata Mlonka-Mędrala ◽  
Panagiotis Evangelopoulos ◽  
Małgorzata Sieradzka ◽  
Monika Zajemska ◽  
Aneta Magdziarz

2021 ◽  
Vol 258 ◽  
pp. 117690
Author(s):  
Sijie Zhou ◽  
Liangjun Xia ◽  
Zhuan Fu ◽  
Chunhua Zhang ◽  
Xiangyu Duan ◽  
...  

Author(s):  
Roger A. Sheldon

This paper is based on a lecture presented to the Royal Society in London on 24 June 2019. Two of the grand societal and technological challenges of the twenty-first century are the ‘greening' of chemicals manufacture and the ongoing transition to a sustainable, carbon neutral economy based on renewable biomass as the raw material, a so-called bio-based economy. These challenges are motivated by the need to eliminate environmental degradation and mitigate climate change. In a bio-based economy, ideally waste biomass, particularly agricultural and forestry residues and food supply chain waste, are converted to liquid fuels, commodity chemicals and biopolymers using clean, catalytic processes. Biocatalysis has the right credentials to achieve this goal. Enzymes are biocompatible, biodegradable and essentially non-hazardous. Additionally, they are derived from inexpensive renewable resources which are readily available and not subject to the large price fluctuations which undermine the long-term commercial viability of scarce precious metal catalysts. Thanks to spectacular advances in molecular biology the landscape of biocatalysis has dramatically changed in the last two decades. Developments in (meta)genomics in combination with ‘big data’ analysis have revolutionized new enzyme discovery and developments in protein engineering by directed evolution have enabled dramatic improvements in their performance. These developments have their confluence in the bio-based circular economy. This article is part of a discussion meeting issue ‘Science to enable the circular economy'.


2010 ◽  
Vol 2 (2) ◽  
pp. 351-361
Author(s):  
A. A. Saleh ◽  
S. Hamdan ◽  
N. Annaluru ◽  
S. Watanabe ◽  
M. R. Rahman ◽  
...  

Agricultural waste biomass has already been transferred to bioethanol and used as energy related products, although many issues such as efficiency and productivity still to be overcome. In this study, the protein engineering was applied to generate enzymes with completely reversed coenzyme specificity and developed recombinant yeasts containing those engineered enzymes for construction of an efficient biomass-ethanol conversion system. Recombinant yeasts were constructed with the genes encoding a wild type xylose reductase (XR) and the protein engineered xylitol dehydrogenase (XDH) (with NADP) of Pichia stipitis.  These recombinant yeasts were characterized based on the enzyme activity and fermentation ability of xylose to ethanol. The protein engineered enzymes were expressed significantly in Saccharomyces cerevisiae as judged by the enzyme activity in vitro. Ethanol fermentation was measured in batch culture under anaerobic conditions. The significant enhancement was found in Y-ARS strain, in which NADP+-dependent XDH was expressed; 85% decrease of unfavorable xylitol excretion with 26% increased ethanol production, when compared with the reference strain expressing the wild-type XDH.  Keywords: Agricultural waste biomass; Protein engineering; Xylitol dehydrogenase; Xylose-fermentation; Eethanol production. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i2.2882               J. Sci. Res. 2 (2), 351-361 (2010) 


Sign in / Sign up

Export Citation Format

Share Document