scholarly journals Impact of the Temperature of Waste Biomass Py-Rolysis on the Quality of the Obtained Biochar

2016 ◽  
Vol 20 (3) ◽  
pp. 115-124
Author(s):  
Marta Marczak ◽  
Mateusz Karczewski ◽  
Dorota Makowska ◽  
Piotr Burmistrz

AbstractCombustion and co-combustion of biomass from different sources is one of the most popular technologies applied in Poland. It allows management of numerous industrial, communal and agricultural waste. Organic waste constitutes one of the richest sources of cheap biomass solid fuels since they are very popular. The paper includes an assessment of practical use of biomass waste: hazelnut shell and pistachio nut shell. The impact of pyrolysis temperature (300, 450 and 550°C) of the investigated biomass on the quality of the obtained biochar was determined and the optimal temperature of this process was defined. The quality of the investigated biomass was analysed on account of its use for energy purposes. Numerous advantageous properties of the obtained materials were found out, for instance: low content of ash and a noticeable increase of the calorific value with an increase of the pyrolysis temperature.

2020 ◽  
Vol 8 (2) ◽  
pp. 17-24
Author(s):  
Ahmad Al Ghozali Hasan ◽  
Amrul Amrul ◽  
M Irsyad

Torefaction is one method of utilizing biomass waste into fuel through a thermal process that takesplace at atmospheric pressure with a temperature range of 200-350 ℃ to a solid quality fuelequivalent to sub-bituminous coal. Densification aims to increase biomass mass density. Thecombination of densification and torrefaction is an attractive process option to get high qualitybriquette and pellet fuel. Making briquettes with the hot printing method is able to eliminate theadhesive material so that the process of making briquettes is faster, direct briquettes can be usedwithout a drying process and are able to maintain the calorific value of raw materials. The purposeof this study is to examine the effect of suppression and heating on the briquetting process oftorefaction results on the quality of briquettes based on the physical properties of the drop test,water resistance, combustion temperature and length of combustion. The best quality briquettesfound were 8 tons of briquettes with a temperature of 150 ℃, where the briquette drop test did notlose much material. In water resistance testing, the water absorbed in 8 ton briquettes withtemperature of 150 ℃ is quite low, and when testing the combustion of briquettes is also quite good.Keywords : Torefaction, densification, briquettes, drop test, water resistant, combustion


2017 ◽  
Vol 3 (1) ◽  
pp. 108-117
Author(s):  
Sulmiyati Sulmiyati ◽  
Nur Saidah Said

The problems faced by farmers in Galung Lombok Village is knowledge in the in the processing of goat livestock manure and waste of hazelnut shell. The solution that can be offered is waste treatment into bio-charcoal briquettes. The community engagement is to introduce community or partners of Community Partnership Program (CPP) in processing livestock manure and agricultural waste into charcoal briquettes as an alternative solution to the problems faced by society and become an alternative business potential that can be developed by farmers. The methods applied in overcoming these problems are through interactive counseling, training with the demonstration of bio-charcoal briquette processing, guidance and mentoring into ready to market products. The results of the dedication activities were held on 13-14 May 2017 at the meeting hall of Siamasei Farmer Group of Galung Lombok Village, Tinambung, Polewali Mandar. This activity is carried out by conducting participatory counseling coupled with demonstrations of processed briquettes from goat manure and hazelnut shell, packaging, and testing of briquette quality. The conclusion that goat livestock manure can be processed into bio-charcoal briquettes through seven stages: drying of raw materials, refining, reducing and filtering, adhesive mixing, printing, drying and packaging. The quality of briquettes produced,the moisture content of 5.58%, ash content of 23.93%, volatile matter of 35.16%, fixed carbon of 35.33%, and calories 4,563 cal/gr.


There is a great potential for bamboo to be applied as a biofuel for the future due to its good fuel properties with low alkali index and fast growth rate. Torrefaction treatment can increase the fuel quality of biomass in terms of the calorific value, energy density and storability. The aim of this research was to explore the effect of torrefaction temperature and reaction time on the fuel properties of B. vulgaris and G. scorthecinii. The bamboos were treated at various torrefaction temperatures (200, 250 and 300˚C) and reaction time (15, 30, 45 mins). In overall, the highest higher heating value was obtained from bamboos torrefied at 300ºC for 45 mins. In general, the temperature used in torrefaction has a relatively stronger effect on the higher heating value while the impact of the residence time was considerably lesser.


Eksergi ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 13
Author(s):  
Sri Wahyu Murni ◽  
Tutik Muji Setyoningrum ◽  
Muhamad Maulana Azimatun Nur

Indonesia biomass waste is a potential feedstock as a source of renewable energy since it can be converted into carcoal briquettes. However, the production of the briquettes using pyrolysis process using the agricultural waste was lacking. In this research, briquette was made from palm shells,  corncob and soybean stem wood due to its high availability and have high cellulose content. The purpose of this research was to produce briquettes from three kind of raw materials by employing pyrolysis process and compared the characteristics. The briquette was made from different type of raw materials (palm shells, corncob and soybean stem) and  the concentration of binder : 3-7 %. Pyrolysis was done at  500 °C, and 100 kg / cm2 of pressing pressure. Results showed that, the best charcoal briquette was achieved from palm shells by using 5% binder, which resulted 4,1% moisture content, 3.4% ash content,  15% volatile matter content, 77.5% carbon content,  7075 cal/g calorific value and  1.4 kg/cm2 compresive strength. It is found that the concentration of binder and raw material influenced the quality of the briquettes. In overall, the production of the briquettes by employing pyrolysis method could meet the standard.


2021 ◽  
Vol 2104 (1) ◽  
pp. 012003
Author(s):  
N H Haryanti ◽  
Suryajaya ◽  
H Wardhana ◽  
S Husain ◽  
R Noor ◽  
...  

Abstract This research made three kinds of briquettes from various biomass waste, including alaban wood charcoal and rubber seed shells mixed with coal bottom ash and coal fly ash. The purpose of the study was to obtain the characteristics and quality of briquette combustion. Making briquettes is by drying, grinding, and sifting raw materials then mixed with adhesive, printing and drying. Briquettes were made with variations in composition and pressure and the particle size of the material passing through the 50 and 250 mesh sieves. Briquettes produced from alaban wood charcoal and coal bottom ash, or fly ash, obtained more bottom ash or fly ash composition characteristics. The moisture content and calorific value would be lower while the ash content was higher. While the initial ignition time, the combustion duration is getting longer, but the burning rate would decrease. Briquettes made from rubber seed shells and coal bottom ash obtained variations in composition and pressure that affect the characteristics and quality of combustion. The higher the rubber seed shell composition and pressure, the lower the water and ash content, but the calorific value increased.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4971
Author(s):  
Wojciech Kosakowski ◽  
Malgorzata Anita Bryszewska ◽  
Piotr Dziugan

Waste biomass can be used as an alternative source of energy. However, such use requires prior treatment of the material. This paper describes the physicochemical characteristics of biochar obtained by the thermochemical decomposition of six types of agricultural waste biomass: residues from the production of flavored spirits (a pulp of lime, grapefruit and lemon), beetroot pulp, apple pomace, brewer’s spent grain, bark and municipal solid waste (bark, sawdust, off-cuts and wood chips). The biomass conversion process was studied under conditions of limited oxygen access in a reactor. The temperature was raised from 450 to 850 °C over 30 min, followed by a residence time of 60 min. The solid products were characterized in terms of their elemental compositions, mass, energy yield and ash content. The gaseous products from pyrolysis of the biomass were also analyzed and their compositions were characterized by GCMS (Gas Chromatography–Mass Spectrometry). The carbonization process increased the carbon content by, on average, 1.7 times, from an average percentage of 46.09% ± 3.65% for biomass to an average percentage of 74.72% ± 5.36% for biochars. After carbonization, the biochars were found to have a net calorific value of between 27 and 32 MJ/kg, which is comparable or even higher than good-quality coal (eco pea coal 24–26 MJ/kg). The net calorific values show that the volatile products can also be considered as a valuable source of energy.


Author(s):  
J. M. Makavana ◽  
P. N. Sarsavadia ◽  
P. M. Chauhan

Bio-char is carbon-rich product generated from biomass through batch type slow pyrolysis. In this study, the effects of pyrolysis temperature and residence time on the yield and properties of bio-chars obtained from shredded cotton stalks were investigated. Safely said that the quality of bio-char of shredded cotton stalk obtained at 500°C temperature and 240 min is best out of the all experimental levels of variables of temperature and residence time. At this temperature and residence time, the quality of bio-char in terms higher heating value (8101.3cal /g or 33.89 MJ/kg), nitrogen (1.56%), Carbon (79.30%), and C/N ratio (50.83) respectively. The quality of bio-char for various applications is discussed along with different quality parameters. The bio-char could be used for the production of activated carbon, in fuel applications, and water purification processes. Average bulk density of whole cotton stalk and shredded cotton stalk was found as 29.90 kg/m3 and 147.02 kg/m3 respectively. Thus density was increased by 3.91 times. The value of pH, EC and CEC of shredded cotton stalk biomass was found as 5.59, 0.03 dS/m and 38.84 cmol/kg respectively. Minimum and maximum values pH, EC and CEC of its bio-char was found as 5.85 to9.86, 0.04 to 0.10 dS/m and 38.02 to 24.39 cmol/kg at 200°C and 60 min and; 500°C and 240 min temperature and residence time respectively. Moisture content, ash content, volatile matter and fixed carbon of shredded cotton stalk biomass were found as, 12.5, 5.27, 80.22, and 14.51 (%, d.b) respectively. The minimum and maximum value of bio-char in terms of ash content, volatile matter and fixed carbon of bio-char were found as 5.5 to 15.56, 48.02 to 79.48 and 15.02 to 36.40 (%, d.b) respectively. Calorific value of cotton stalk biomass was found as 3685.3 cal /g. The minimum and maximum higher heating value of its bio-char was found as 4622.0 cal/ g and 8101.3 cal/g at 200°C and 60 min and; 500˚C and 240 min temperature and residence time.


2021 ◽  
Vol 13 (6) ◽  
pp. 3069 ◽  
Author(s):  
Anwar Ameen Hezam Saeed ◽  
Noorfidza Yub Harun ◽  
Muhammad Roil Bilad ◽  
Muhammad T. Afzal ◽  
Ashak Mahmud Parvez ◽  
...  

An agricultural waste-based source of energy in the form of briquettes from rice husk has emerged as an alternative energy source. However, rice husk-based briquette has a low bulk density and moisture content, resulting in low durability. This study investigated the effect of initial moisture contents of 12%, 14%, and 16% of rice husk-based briquettes blended with 10 wt% of kraft lignin on their chemical and physical characteristics. The briquetting was done using a hand push manual die compressor. The briquette properties were evaluated by performing chemical (ultimate and proximate analysis, thermogravimetric analysis), physical (density, durability, compressive strength, and surface morphology) analyses. The durability values of all briquette samples were above 95%, meeting the standard with good compressive strength, surface morphology, and acceptable density range. The briquette made from the blend with 14% moisture content showed the highest calorific value of 17.688 MJ kg−1, thanks to its desirable morphology and good porosity range, which facilitates the transport of air for combustion. Overall, this study proved the approach of enhancing the quality of briquettes from rice husk by controlling the moisture content.


2014 ◽  
Vol 1001 ◽  
pp. 114-117 ◽  
Author(s):  
Emília Hroncová ◽  
Juraj Ladomerský

In recent years, research has shown the advisability of seeking new types of biofuel. It has been shown that apart from one-component fuel, it is also advisable to use mixtures composed of basic raw materials. These mixtures may have a favourable effect upon the overall recovery of such fuels. This paper focuses upon options for the energy use of various mixtures of biomass waste. Biomass waste originates from primary agricultural production and countryside maintenance. This mainly consists of plant residues, i.e. straw and hay. Pellets were made using the given biomass. The pellets were prepared by mixing plant residues with spruce shavings as well as from pure materials, i.e. wheat straw, hay and sawdust. Individual types of biomass were mixed in various ratios: 50% wheat straw + 50% hay, 50% wheat straw + 50% sawdust, 50% hay + 50% sawdust, 33% wheat straw + 33% hay + 33% sawdust. The following basic parameters of the prepared samples were monitored: humidity, calorific value and ash content. These parameters influence the environmental as well as economic aspects of options for using these plant residues as fuel. It was discovered during the tests that the highest calorific value was achieved using a sample of biomass prepared by mixing 50% straw and 50% hay. The highest humidity was found in a sample of sawdust and the highest ash content in a sample prepared by mixing 50% straw and 50% hay.


Author(s):  
Nofriady Handra ◽  
Anwar Kasim ◽  
Gunawarman Gunawarman ◽  
Santosa Santosa

<p><span>Empty Fruit Bunches (EFB) are one of the palm oil industry wastes, which are quite plentiful and currently unused optimally. Biomass is one of the renewable energy resources which has important roles in the world. The bio-briquettes are manufactured through densification of waste biomass by implementing certain processes. This research aimed to obtain variations in the mold temperature at 150 ºC, 200 ºC, and 250 ºC to the calorific value and toughness of the briquette material. The toughness was tested using ASTM D 440-86 R02 standard. Arduino program was used for setting the heating resistance time of the mold, which was 20 minutes and the thermal controller was used to adjust the temperature variation. The average mold pressure was 58 Psi. The highest heating value was obtained at a mold temperature of 250 ºC with a value of 5256 cal/g, and the lowest was resulted at a temperature of 150 ºC (4117 cal/g). Meanwhile, the briquette toughness test at 200 ºC mold temperature indicated good data results in which the average loss of fiber particles was only 4.17 %, this was because the adhesion between particles by lignin and cellulose in the fiber functions optimally at this temperature so that the resistance of briquettes went through minor damage.</span></p>


Sign in / Sign up

Export Citation Format

Share Document