scholarly journals Manufacturing and Recycling Impact on Environmental Life Cycle Assessment of Innovative Wind Power Plant Part 2/2

Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 204
Author(s):  
Patrycja Bałdowska-Witos ◽  
Krzysztof Doerffer ◽  
Michał Pysz ◽  
Piotr Doerffer ◽  
Andrzej Tomporowski ◽  
...  

The process of conversion of wind kinetic energy into electricity in innovative wind power plant emits practically no harmful substances into the environment. However, the production stage of its components requires a lot of energy and materials. The biggest problem during production planning process of an innovative wind power plant is selection of materials and technologies and, consequently, the waste generated at this stage. Therefore, the aim of this publication was to conduct an environmental analysis of the life cycle of elements of a wind turbine by means of life cycle assessment (LCA) method. The object of the research was a wind power plant divided into five sets of components (tower, turbine structure, rotors, generators, and instrumentation), made mainly of steel and small amounts of polymer materials. Eco-indicator 99 was used as an analytical procedure. The impact of the subjects of analysis on human health, ecosystem quality and resources was assessed. Among the analyzed components, the highest level of negative impact on the environment was characterized by the life cycle of the wind turbine tower. The application of recycling processes is reducing the negative impact on the environment in the perspective of the entire life cycle of all studied elements of the wind power plant construction.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1828 ◽  
Author(s):  
Izabela Piasecka ◽  
Patrycja Bałdowska-Witos ◽  
Józef Flizikowski ◽  
Katarzyna Piotrowska ◽  
Andrzej Tomporowski

Controlling the system—the environment of power plants is called such a transformation—their material, energy and information inputs in time, which will ensure that the purpose of the operation of this system or the state of the environment, is achieved. The transformations of systems and environmental inputs and their goals describe the different models, e.g., LCA model groups and methods. When converting wind kinetic energy into electricity, wind power plants emit literally no harmful substances into the environment. However, the production and postuse management stages of their components require large amounts of energy and materials. The biggest controlling problem during postuse management is wind power plant blades, followed by waste generated during their production. Therefore, this publication is aimed at carrying out an ecological, technical and energetical transformation analysis of selected postproduction waste of wind power plant blades based on the LCA models and methods. The research object of control was eight different types of postproduction waste (fiberglass mat, roving fabric, resin discs, distribution hoses, spiral hoses with resin, vacuum bag film, infusion materials residues, surplus mater), mainly made of polymer materials, making it difficult for postuse management and dangerous for the environment. Three groups of models and methods were used: Eco-indicator 99, IPCC and CED. The impact of analysis objects on human health, ecosystem quality and resources was controlled and assessed. Of all the tested waste, the life cycle of resin discs made of epoxy resin was characterized by the highest level of harmful technology impact on the environment and the highest energy consumption. Postuse control and management in the form of recycling would reduce the negative impact on the environment of the tested waste (in the perspective of their entire life cycle). Based on the results obtained, guidelines and models for the proecological postuse control of postproduction polymer waste of wind power plants blades were proposed.


2019 ◽  
Vol 9 (2) ◽  
pp. 231 ◽  
Author(s):  
Izabela Piasecka ◽  
Andrzej Tomporowski ◽  
Józef Flizikowski ◽  
Weronika Kruszelnicka ◽  
Robert Kasner ◽  
...  

This study deals with the problems connected with the benefits and costs of an offshore wind power plant in terms of ecology. Development prospects of offshore and land-based wind energy production are described. Selected aspects involved in the design, construction, and operation of offshore wind power plant construction and operation are presented. The aim of this study was to analyze and compare the environmental impact of offshore and land-based wind power plants. Life cycle assessment analysis of 2-MW offshore and land wind power plants was made with the use of Eco-indicator 99 modeling. The results were compared in four areas of impact in order to obtain values of indexes for nonergonomic (impact on/by operator), nonfunctional (of/on the product), nonecological (on/by living objects), and nonsozological impacts (on/by manmade objects), reflecting the extent of threat to human health, the environment, and natural resources. The processes involved in extraction of fossil fuels were found to produce harmful emissions which in turn lead to respiratory system diseases being, thus, extremely dangerous for the natural environment. For all the studied areas, the impact on the environment was found to be higher for land-based wind power plants than for an offshore wind farm.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4975
Author(s):  
Katarzyna Piotrowska ◽  
Izabela Piasecka

Wind power plants during generation of electricity emit almost no detrimental substances into the milieu. Nonetheless, the procedure of extraction of raw materials, production of elements and post-use management carry many negative environmental consequences. Wind power plant blades are mainly made of polymer materials, which cause a number of problems during post-use management. Controlling the system and the environment means such a transformation of their inputs in time that will ensure the achievement of the goal of this system or the state of the environment. Transformations of control of system and environment inputs, for example, blades production, are describing various models which in the research methodology, like LCA (Life Cycle Assessment), LCM (Life Cycle Management), LCI (Life Cycle Inventory), etc. require meticulous grouping and weighing of life cycle variables of polymer materials. The research hypothesis was assuming, in this paper, that the individual post-production waste of wind power plant blades is characterized by a different potential impact on the environment. For this reason, the aim of this publication is to conduct an ecological and energy life cycle analysis, evaluation, steering towards minimization and development (positive progress) of selected polymer waste produced during the manufacture of wind power plant blades. The analyzes were based on the LCA method. The subject of the research was eight types of waste (fiberglass mat, roving fabric, resin discs, distribution hoses, spiral hoses with resin, vacuum bag film, infusion materials residues and surplus mater), which are most often produced during the production of blades. Eco-indicator 99 and CED (Cumulative Energy Demand) were used as the computation procedures. The influence of the analyzed objects on human health, ecosystem quality and resources was appraised. Amidst the considered wastes, the highest level of depreciating impact on the milieu was found in the life cycle of resin discs (made of epoxy resin). The application of recycling processes would decrease the depreciating environmental influence in the context of the total life cycle of all analyzed waste. Based on the outcome of the analyzes, recommendations were proposed for the environmentally friendly post-use management of wind power plant blades, that can be used to develop new blade manufacturing techniques that better fit in with sustainable development and the closed-cycle economy.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 220
Author(s):  
Krzysztof Doerffer ◽  
Patrycja Bałdowska-Witos ◽  
Michał Pysz ◽  
Piotr Doerffer ◽  
Andrzej Tomporowski

Wind power plants are considered as an ecologically-clean source of energy. However, manufacturing processes cannot be treated that way. Manufacturing processes consume huge amounts of electrical and thermal energy and significant amount of materials, e.g., steel, polymers, oils, and lubricants. All of the above could be potentially harmful for environment. There are not many works and publications regarding life-cycle analysis of wind power plants. This study’s objective is to use LCA (Life Cycle Assessment) to the manufacturing and utilization of a specific drag force-driven wind turbine. The discussed innovative wind turbine is of the type that assures safety for prosumer application. Drag force-driven turbines become more heavy than other types of lift driven turbines, but at the same time, their characteristic provides opportunity to use easily recyclable materials instead of materials like plastics or composites. The wider look through LCA tools, may change the perspective of view at that type of wind turbines. Analyzed turbine has capacity of 15 kW and is located in Poland. LCA was carried out using Eco-indicator 99 method in eleven impact categories. Among all of the turbine components, the highest negative impact was noted in the case of the tower. The wind turbine under consideration is characterized by high recycling potential. According to the presented research, recycling provides around 30% reduction of the environmental impact.


2021 ◽  
Vol 82 (4) ◽  
pp. 51-60
Author(s):  
Taras Boyko ◽  
◽  
Mariia Ruda ◽  
Serhiy Stasevych ◽  
Olha Chaplyk ◽  
...  

The modeling of the mutual influence of the wind power plant and the ecosystem is carried out. It is proposed to consider the compartment of a complex landscape complex as an elementary structural element of the ecosystem. The wind power plant is a component of a complex landscape complex and is considered during its life cycle. The categories of environmental impact and the relative contribution of harmful factors for each category have been determined. The modeling was carried out using various scenarios of waste management, which will make it possible to reduce the negative impact of harmful factors for each category. Summary data on the impact of harmful factors on the environment were obtained, and ecological profiles were constructed using the Eco-indicator methodology. Such profiles, together with the weighting factors, allow a comprehensive presentation of environmental impacts and obtaining the values of eco-indicators that characterize the damage caused by a wind turbine to the environment. The process of synthesis of an industrial cyber-physical system is carried out by five typical steps, among which the process of ‘cyber-realization’ is to create a cyber twin and compare it with the real system. To implement this process, mathematical modeling was carried out, as a result of which a system of differential equations was obtained, the input data for which were the values of environmental impacts, expressed by the specified indicators. The resulting model will act as ideal for a real system ‘wind turbine – environment”, and will allow predicting the consequences of the harmful impact of a wind turbine on a complex landscape system and will determine the main impacts to achieve its maximum efficiency and adaptation to the requirements for environmental protection and conservation. Some results obtained using the developed model are presented.


Author(s):  
Yuliya S. Borisova ◽  
Nataliya S. Samarskaya

Introduction. Active withdrawal of energy raw materials from the subsoil, as well as technogenic impact from energy sources based on traditional fuel, lead to irreversible environmental consequences. To minimize this impact, it is necessary to start from two main conditions: the search for alternative energy sources and the improvement of the existing ones. Problem Statement. The objective of this study is a comparative analysis of energy facilities in order to identify the plant that has the greatest negative impact on the environment. Theoretical part. The comparative analysis of various energy production systems reflects the ecological and economic components of each. For example, a thermal power plant (TPP), a nuclear power plant (NPP) and a wind power plant (WPP) are considered. The negative impact on the environment is mainly exerted on the atmospheric air, in connection with which the data on the amount of pollutants are considered. Also, a modified Leopold matrix was constructed for an expert assessment of the mentioned stations. Conclusions. The results of the analysis show that among the considered power plants, the wind power plant is the most environmentally friendly and favorable for the health of the population.


2021 ◽  
Vol 13 (13) ◽  
pp. 7279
Author(s):  
Zbigniew Skibko ◽  
Magdalena Tymińska ◽  
Wacław Romaniuk ◽  
Andrzej Borusiewicz

Wind power plants are an increasingly common source of electricity located in rural areas. As a result of the high variability of wind power, and thus the generated power, these sources should be classified as unstable sources. In this paper, the authors attempted to determine the impact of wind turbine operation on the parameters of electricity supplied to farms located near the source. As a result of the conducted field tests, variability courses of the basic parameters describing the supply voltage were obtained. The influence of power plant variability on the values of voltage, frequency, and voltage distortion factor was determined. To estimate the capacity of the transmission lines, the reactive power produced in the power plant and its effect on the value of the power factor were determined. The conducted research and analysis showed that the wind power plant significantly influences voltage fluctuations in its immediate vicinity (the maximum value registered was close to 2%, while the value required by law was 2.5%). Although all the recorded values are within limits specified by the current regulations (e.g., the THD value is four times lower than the required value), wind turbines may cause incorrect operation of loads connected nearby. This applies mainly to cases where consumers sensitive to voltage fluctuations are installed in the direct vicinity of the power plant.


KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 172
Author(s):  
Tedy Harsanto ◽  
Haryo Dwi Prananto ◽  
Esmar Budi ◽  
Hadi Nasbey

<p>A vertical axis wind turbine triple-stage savonius type has been created by using simple materials to generate electricity for the alternative wind power plant. The objective of this research is to design a simple wind turbine which can operate with low wind speed. The turbine was designed by making three savonius rotors and then varied the structure of angle on the three rotors, 0˚, 90˚ and 120˚. The dimension of the three rotors are created equal with each rotor diameter 35 cm and each rotor height 19 cm. The turbine was tested by using blower as the wind sources. Through the measurements obtained the comparisons of output power, rotation of turbine, and the level of efficiency generated by the three variations. The result showed that the turbine with angle of 120˚ operate most optimally because it is able to produce the highest output power and highest rotation of turbine which is 0.346 Watt and 222.7 RPM. </p><p><strong>Keywords</strong>: Output power; savonius turbine; triple-stage; the structure of angle</p>


2018 ◽  
Vol 874 ◽  
pp. 18-26
Author(s):  
Mila Tartiarini ◽  
Udisubakti Ciptomulyono

Waste water result from operating activities of Grati Combined Cycled Power Plant (CCPP) is significant amount and has potentially to be reutilized. A recycling unit as the pilot project has been applied in Grati CCPP PT Indonesia Power UP Perak Grati for capacity 4 tons/hour of service water product. Development plant of Grati CCPP up to year 2018 will produce more amounts of waste water, and potentially increase the pollution load in the unit area.Considering the use of alternative development for unit recycled waste water effluent from the Waste Water Treatment Plant (WWTP) has implications to the environmental and cost aspects, therefore a proper assessment to decide the alternative is needed. Proposed method of Life Cycle Assessment (LCA) is to measure the impact to the environment. And the Cost Benefit Analysis (CBA) is to measure the economic criteria. To integrate the results of the two methods, it is used and calculated by using Hierarcy Analytical Process (AHP).The result of the study about the environmental impact and economic analysis, the development of the recycling unit is required to process all waste water produced by power plants. Focus group by experts in power plant operation using AHP is based on the results of SimaPro 7.0 and CBA. The most beneficial result is with a single score of 0.2314 Pt / 1 ton of water service, the payback period of 2.5 years, 37.5% IRR and NPV US$ 88,577.23 and the MMF-RO unit for total capacity of 14 tons/hour has become the most alternative of development.


2019 ◽  
Vol 9 (21) ◽  
pp. 4695 ◽  
Author(s):  
Esmaeil Ebrahimzadeh ◽  
Frede Blaabjerg ◽  
Torsten Lund ◽  
John Godsk Nielsen ◽  
Philip Carne Kjær

It is important to develop modelling tools to predict unstable situations resulting from the interactions between the wind power plant and the weak power system. This paper presents a unified methodology to model and analyse a wind power plant connected to weak grids in the frequency-domain by considering the dynamics of the phase lock loop (PLL) and controller delays, which have been neglected in most of the previous research into modelling of wind power plants to simplify modelling. The presented approach combines both dq and positive/negative sequence domain modelling, where a single wind turbine is modelled in the dq domain but the whole wind power plant connected to the weak grid is analysed in the positive/negative sequence domain. As the proposed modelling of the wind power plant is systematic and modular and based on the decoupled positive/negative sequence impedances, the application of the proposed methodology is relevant for transmission system operators (TSOs) to assess stability easily with a very low compactional burden. In addition, as the analytical dq impedance models of the single wind turbine are provided, the proposed methodology is an optimization design tool permitting wind turbine manufacturers to tune their converter control. As a case study, a 108 MW wind power plant connected to a weak grid was used to study its sensitivity to variations in network short-circuit level, X/R ratio and line series capacitor compensation (Xc/Xg).


Sign in / Sign up

Export Citation Format

Share Document