scholarly journals Depletion-Induced Chiral Chain Formation of Magnetic Spheres

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 507
Author(s):  
Sandrine M. F. Heijnen ◽  
Patrick van Vliet ◽  
Bonny W. M. Kuipers ◽  
Albert P. Philipse ◽  
Andrei V. Petukhov ◽  
...  

Experimental evidence is presented for the spontaneous formation of chiral configurations in bulk dispersions of magnetized colloids that interact by a combination of anisotropic dipolar interactions and isotropic depletion attractions. The colloids are superparamagnetic silica spheres, magnetized and aligned by a carefully tuned uniform external magnetic field; isotropic attractions are induced by using poly(ethylene oxide) polymers as depleting agents. At specific polymer concentrations, sphere chains wind around each other to form helical structures–of the type that previously have only been observed in simulations on small sets of unconfined dipolar spheres with additional isotropic interactions.

ACS Omega ◽  
2022 ◽  
Author(s):  
Amna M. I. Rabie ◽  
Ahmed S. M. Ali ◽  
Munir A. Al-Zeer ◽  
Ahmed Barhoum ◽  
Salwa EL-Hallouty ◽  
...  

2006 ◽  
Vol 73 (9) ◽  
Author(s):  
A. M. Abu-Labdeh ◽  
A. B. MacIsaac ◽  
J. P. Whitehead ◽  
K. De’Bell ◽  
M. G. Cottam

1991 ◽  
Vol 231 ◽  
Author(s):  
P. Bruno

AbstractTheoretical investigations of the magnetization and Curie temperature of ferromagnetic ultrathin films in the presence of magnetic anisotropy and long-range dipolar interactions are presented. The Curie temperature of fcc (001) cobalt ultrathin films is calculated and compared with experimental results on Co/Cu (001) films. The influence of an external magnetic field, and the surface gradient of the magnetization are also discussed.


2018 ◽  
Vol 175 ◽  
pp. 12008 ◽  
Author(s):  
Claudio Bonati ◽  
Salvatore Calì ◽  
Massimo D’Elia ◽  
Michele Mesiti ◽  
Francesco Negro ◽  
...  

We study the behavior of the confining flux tube in Nf = 2 + 1 QCD at the physical point, discretized with the stout smearing improved staggered quark action and the tree level Symazik gauge action. We discuss how it depends on a uniform external magnetic field, showing how it displays anisotropies with respect to the magnetic field direction. Moreover, we compare the observed anisotropy pattern with that of the static quark-antiquark (QQ̅) potential we obtained in [1, 2].


2013 ◽  
Vol 28 (06) ◽  
pp. 1350014 ◽  
Author(s):  
S. I. KRUGLOV

The wave equation for spinless particles with the Lorentz violating term is considered. We formulate the third-order in derivatives wave equation leading to the modified dispersion relation. The first-order formalism is considered and the density matrix is obtained. The Schrödinger form of equations is presented and the quantum-mechanical Hamiltonian is found. Exact solutions of the wave equation are obtained for particles in the constant and uniform external magnetic field. The change of the synchrotron radiation radius due to quantum gravity corrections is calculated.


2015 ◽  
Vol 764 ◽  
pp. 316-348 ◽  
Author(s):  
Habibur Rahman ◽  
Sergey A. Suslov

AbstractLinear stability of magnetoconvection of a ferromagnetic fluid contained between two infinite differentially heated non-magnetic plates in the presence of an oblique uniform external magnetic field is studied in zero gravity conditions. The thermomagnetic convection that arises is caused by the spatial variation of magnetisation occurring due to its dependence on the temperature. The critical values of the governing parameters at which the transition between motionless and convective states is observed are determined for various field inclination angles and for fluid magnetic parameters that are consistently chosen from a realistic experimental range. It is shown that, similar to natural paramagnetic fluids, the most prominent convection patterns align with the in-layer component of the applied magnetic field but in contrast to such paramagnetic fluids the instability patterns detected in ferrofluids can be oscillatory. It is also found that, contrary to paramagnetic fluids, the stability characteristics of magnetoconvection in ferrofluids depend on the magnitude of the applied field which becomes an additional parameter of the problem. This is shown to be due to the nonlinearity of the magnetic field distribution within the ferrofluid.


Author(s):  
D. V. Saveliev ◽  
L. Yu. Fetisov ◽  
D. V. Chashin ◽  
P. A. Shabin ◽  
D. A. Vyunik ◽  
...  

Magnetic deformation is a change in the size and shape of a sample under the action of a uniform external magnetic field. The study of this effect in various materials provides deep understanding of the nature of magnetic and mechanical interactions. Moreover, magnetic deformation is of great interest from an engineering point of view for designing new devices. In magnetoactive elastomers containing magnetic microparticles in the polymer matrix, a giant deformation is detected under the action of an external magnetic field. The generally accepted methods for measuring magnetic deformation in magnetoactive soft materials are now practically absent. The article describes the installation for the study of the magnetomechanical characteristics of magnetoactive elastomers and demonstrates its experimental capabilities. The installation allows to measure deformations in the range from 0 to 12.5 mm with a resolution of 1 micron. The deformation curves obtained using these installations are required for developing actuators and sensors based on magnetoactive elastomers, and also for improving their manufacturing technologies.


Sign in / Sign up

Export Citation Format

Share Document